Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 66(12): e0100122, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36321830

RESUMO

The discovery and development of transmission-blocking therapies challenge malaria elimination and necessitate standard and reproducible bioassays to measure the blocking properties of antimalarial drugs and candidate compounds. Most of the current bioassays evaluating the transmission-blocking activity of compounds rely on laboratory-adapted Plasmodium strains. Transmission-blocking data from clinical gametocyte isolates could help select novel transmission-blocking candidates for further development. Using freshly collected Plasmodium falciparum gametocytes from asymptomatic individuals, we first optimized ex vivo culture conditions to improve gametocyte viability and infectiousness by testing several culture parameters. We next pre-exposed ex vivo field-isolated gametocytes to chloroquine, dihydroartemisinin, primaquine, KDU691, GNF179, and oryzalin for 48 h prior to direct membrane feeding. We measured the activity of the drug on the ability of gametocytes to resume the sexual life cycle in Anopheles after drug exposure. Using 57 blood samples collected from Malian volunteers aged 6 to 15 years, we demonstrate that the infectivity of freshly collected field gametocytes can be preserved and improved ex vivo in a culture medium supplemented with 10% horse serum at 4% hematocrit for 48 h. Moreover, our optimized drug assay displays the weak transmission-blocking activity of chloroquine and dihydroartemisinin, while primaquine and oryzalin exhibited a transmission-blocking activity of ~50% at 1 µM. KDU691 and GNF179 both interrupted Plasmodium transmission at 1 µM and 5 nM, respectively. This new approach, if implemented, has the potential to accelerate the screening of compounds with transmission-blocking activity.


Assuntos
Antimaláricos , Malária Falciparum , Humanos , Plasmodium falciparum , Primaquina , Malária Falciparum/prevenção & controle , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Cloroquina/farmacologia , Cloroquina/uso terapêutico
2.
Malar J ; 21(1): 65, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35197053

RESUMO

BACKGROUND: Over the past decade, three strategies have reduced severe malaria cases and deaths in endemic regions of Africa, Asia and the Americas, specifically: (1) artemisinin-based combination therapy (ACT); (2) insecticide-treated bed nets (ITNs); and, (3) intermittent preventive treatment with sulfadoxine-pyrimethamine in pregnancy (IPTp). The rationale for this study was to examine communities in Dangassa, Mali where, in 2015, two additional control strategies were implemented: ITN universal coverage and seasonal malaria chemoprevention (SMC) among children under 5 years old. METHODS: This was a prospective study based on a rolling longitudinal cohort of 1401 subjects participating in bi-annual smear surveys for the prevalence of asymptomatic Plasmodium falciparum infection and continuous surveillance for the incidence of human disease (uncomplicated malaria), performed in the years from 2012 to 2020. Entomological collections were performed to examine the intensity of transmission based on pyrethroid spray catches, human landing catches and enzyme-linked immunosorbent assay (ELISA) testing for circumsporozoite antigen. RESULTS: A total of 1401 participants of all ages were enrolled in the study in 2012 after random sampling of households from the community census list. Prevalence of infection was extremely high in Dangassa, varying from 9.5 to 62.8% at the start of the rainy season and from 15.1 to 66.7% at the end of the rainy season. Likewise, the number of vectors per house, biting rates, sporozoites rates, and entomological inoculation rates (EIRs) were substantially greater in Dangassa. DISCUSSION: The findings for this study are consistent with the progressive implementation of effective malaria control strategies in Dangassa. At baseline (2012-2014), prevalence of P. falciparum was above 60% followed by a significant year-to-year decease starting in 2015. Incidence of uncomplicated infection was greater among children < 5 years old, while asymptomatic infection was more frequent among the 5-14 years old. A significant decrease in EIR was also observed from 2015 to 2020. Likewise, vector density, sporozoite rates, and EIRs decreased substantially during the study period. CONCLUSION: Efficient implementation of two main malaria prevention strategies in Dangassa substantially contribute to a reduction of both asymptomatic and symptomatic malaria from 2015 to 2020.


Assuntos
Mosquiteiros Tratados com Inseticida , Malária Falciparum , Malária , Adolescente , Criança , Pré-Escolar , Humanos , Malária/epidemiologia , Malária/prevenção & controle , Malária Falciparum/epidemiologia , Malária Falciparum/prevenção & controle , Mali/epidemiologia , Estudos Prospectivos
3.
Malar J ; 21(1): 152, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35614489

RESUMO

Building on an exercise that identified potential harms from simulated investigational releases of a population suppression gene drive for malaria vector control, a series of online workshops identified nine recommendations to advance future environmental risk assessment of gene drive applications.


Assuntos
Anopheles , Tecnologia de Impulso Genético , Malária , Animais , Anopheles/genética , Malária/prevenção & controle , Controle de Mosquitos , Mosquitos Vetores/genética , Medição de Risco
4.
Malar J ; 20(1): 127, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33663515

RESUMO

BACKGROUND: Implementation and upscale of effective malaria vector control strategies necessitates understanding the multi-factorial aspects of transmission patterns. The primary aims of this study are to determine the vector composition, biting rates, trophic preference, and the overall importance of distinguishing outdoor versus indoor malaria transmission through a study at two communities in rural Mali. METHODS: Mosquito collection was carried out between July 2012 and June 2016 at two rural Mali communities (Dangassa and Koïla Bamanan) using pyrethrum spray-catch and human landing catch approaches at both indoor and outdoor locations. Species of Anopheles gambiae complex were identified by polymerase chain reaction (PCR). Enzyme-Linked -Immuno-Sorbent Assay (ELISA) were used to determine the origin of mosquito blood meals and presence of Plasmodium falciparum sporozoite infections. RESULTS: A total of 11,237 An. gambiae sensu lato (s.l.) were collected during the study period (5239 and 5998 from the Dangassa and Koïla Bamanan sites, respectively). Of the 679 identified by PCR in Dangassa, Anopheles coluzzii was the predominant species with 91.4% of the catch followed by An. gambiae (8.0%) and Anopheles arabiensis (0.6%). At the same time in Koïla Bamanan, of the 623 An. gambiae s.l., An. coluzzii accounted for 99% of the catch, An. arabiensis 0.8% and An. gambiae 0.2%. Human Blood Index (HBI) measures were significantly higher in Dangassa (79.4%; 95% Bayesian credible interval (BCI) [77.4, 81.4]) than in Koïla Bamanan (15.9%; 95% BCI [14.7, 17.1]). The human biting rates were higher during the second half of the night at both sites. In Dangassa, the sporozoite rate was comparable between outdoor and indoor mosquito collections. For outdoor collections, the sporozoite positive rate was 3.6% (95% BCI [2.1-4.3]) and indoor collections were 3.1% (95% BCI [2.4-5.0]). In Koïla Bamanan, the sporozoite rate was higher indoors at 4.3% (95% BCI [2.7-6.3]) compared with outdoors at 2.4% (95% BCI [1.1-4.2]). In Dangassa, corrected entomological inoculation rates (cEIRs) using HBI were 13.74 [95% BCI 9.21-19.14] infective bites/person/month (ib/p/m) at indoor, and 18.66 [95% BCI 12.55-25.81] ib/p/m at outdoor. For Koïla Bamanan, cEIRs were 1.57 [95% BCI 2.34-2.72] ib/p/m and 0.94 [95% BCI 0.43-1.64] ib/p/m for indoor and outdoor, respectively. EIRs were significantly higher at the Dangassa site than the Koïla Bamanan site. CONCLUSION: The findings in this work may indicate the occurrence of active, outdoor residual malaria transmission is comparable to indoor transmission in some geographic settings. The high outdoor transmission patterns observed here highlight the need for additional strategies to combat outdoor malaria transmission to complement traditional indoor preventive approaches such as long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) which typically focus on resting mosquitoes.


Assuntos
Anopheles/fisiologia , Malária Falciparum/transmissão , Mosquitos Vetores/fisiologia , Plasmodium falciparum/isolamento & purificação , Adulto , Animais , Biodiversidade , Meio Ambiente , Comportamento Alimentar , Feminino , Humanos , Masculino , Mali , População Rural , Esporozoítos/isolamento & purificação , Adulto Jovem
5.
Malar J ; 20(1): 53, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33478519

RESUMO

Stakeholder engagement is an essential pillar for the development of innovative public health interventions, including genetic approaches for malaria vector control. Scientific terminologies are mainly lacking in local languages, yet when research activities involve international partnership, the question of technical jargon and its translation is crucial for effective and meaningful communication with stakeholders. Target Malaria, a not-for-profit research consortium developing innovative genetic approaches to malaria vector control, carried out a linguistic exercise in Mali, Burkina Faso and Uganda to establish the appropriate translation of its key terminology to local languages of sites where the teams operate. While reviewing the literature, there was no commonly agreed approach to establish such glossary of technical terms in local languages of the field sites where Target Malaria operates. Because of its commitment to the value of co-development, Target Malaria decided to apply this principle for the linguistic work and to take the opportunity of this process to empower communities to take part in the dialogue on innovative vector control. The project worked with linguists from other institutions (whether public research ones or private language centre) who developed a first potential glossary in the local language after better understanding the project scientific approach. This initial glossary was then tested during focus groups with community members, which significantly improved the proposed translations by making them more appropriate to the local context and cultural understanding. The stepwise process revealed the complexity and importance of elaborating a common language with communities as well as the imbrication of language with cultural aspects. This exercise demonstrated the strength of a co-development approach with communities and language experts as a way to develop knowledge together and to tailor communication to the audience even in the language used.


Assuntos
Anopheles/genética , Dicionários como Assunto , Técnicas Genéticas , Malária/prevenção & controle , Mosquitos Vetores/genética , Saúde Pública/métodos , Participação dos Interessados , Animais , Burkina Faso , Feminino , Humanos , Linguística , Malária/parasitologia , Masculino , Mali , Controle de Mosquitos , Mosquitos Vetores/parasitologia , Uganda
6.
Reprod Health ; 18(1): 243, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34861876

RESUMO

BACKGROUND: Early adolescence is a critical period where social norms, attitudes, and behaviors around gender equality form. Social norms influence adolescent choices and behaviors and are reinforced by caregivers and community members, affecting girls' reproductive health and educational opportunities. Understanding how to shift these often-interconnected norms to delay child marriage, pregnancy and keep girls in school requires understanding of the structure and dynamics of family and community systems. The Senegalese and American non-governmental organization, the Grandmothers Project-Change through Culture, seeks to address these intertwined factors through innovative community change strategies that build on the specific structure and values of West African collectivist cultures. METHODS: The Girls' Holistic Development approach in rural Vélingara, Senegal posits that by increasing recognition, knowledge and empowerment of elder community women and reinforcing intergenerational communication and decision-making, community members including girls will support and advocate on behalf of girls' interests and desires. We assessed the Girls Holistic Development approach using Realist Evaluation with a mixed-method, quasi-experimental design with a comparison population. We examined differences in intergenerational communication, decision-making and descriptive and injunctive norms related to early marriage, pregnancy and schooling. RESULTS: After 18 months, intergenerational communication was more likely, grandmothers felt more valued in their communities, adolescent girls felt more supported with improved agency, and norms were shifting to support delayed marriage and pregnancy and keeping girls in school. Grandmothers in intervention villages were statistically significantly more likely to be perceived as influential decision-makers by both VYA girls and caregivers for marriage and schooling decisions compared to girls and caregivers in comparison villages. CONCLUSIONS: This realist evaluation demonstrated shift in social norms, particularly for VYA girls, in intervention villages favoring delaying girls' marriage, preventing early pregnancy and keeping girls in school along with increased support for and action by grandmothers to support girls and their well-being related to these same outcomes. These shifts represent greater community social cohesion on girl-child issues. This research helps explain the linkage between social norms and girls' reproductive health and education outcomes and demonstrates that normative shifts can lead to behavior change via collective community action mechanisms.


During adolescence in Senegal, as elsewhere, decisions on whether to keep girls in school and at what age to marry girls are made by their caregivers and influenced by family and community members. Early pregnancy occurs at these ages, either before or during marriage. These social influences, called social norms, set expectations for parents and girls.The Grandmothers Project­Change through Culture developed an intervention to shift social norms and change these three outcomes­early pregnancy, early marriage and keeping girls in school. The project, called Girls Holistic Development (GHD), builds on local relationships between girls, grandmothers, parents and community leaders and local values to facilitate discussion, reflection, collaboration and advocacy.This study used realist evaluation methods, including qualitative and quantitative interview and focus group discussions, to understand whether these shifts in norms and behaviors took place. Research took place with girls, grandmothers and male and female caregivers 18 months after GHD started. Quantitative survey included 7 intervention and 7 comparison villages.Results supported GHDs' expectations and strategy. In intervention villages, grandmothers and girls reported closer relationships; parents considered grandmothers important sources of advice. Girls, grandmothers and caregivers described social expectations as favoring girl's education, marriage at older ages and development of strategies to prevent girl's pregnancy in intervention villages.This evaluation provided strong support for GHDs' ability to shift social norms to improve girls' outcomes. By working with local relationships and values, GHD created more communication between community and family members and facilitated increased social bonds within the community.


Assuntos
Saúde da Criança , Normas Sociais , Adolescente , Idoso , Criança , Feminino , Humanos , Casamento , Gravidez , Senegal , Coesão Social
7.
Mol Ecol ; 25(23): 5889-5906, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27759895

RESUMO

The molecular mechanisms and genetic architecture that facilitate adaptive radiation of lineages remain elusive. Polymorphic chromosomal inversions, due to their recombination-reducing effect, are proposed instruments of ecotypic differentiation. Here, we study an ecologically diversifying lineage of Anopheles gambiae, known as the Bamako chromosomal form based on its unique complement of three chromosomal inversions, to explore the impact of these inversions on ecotypic differentiation. We used pooled and individual genome sequencing of Bamako, typical (non-Bamako) An. gambiae and the sister species Anopheles coluzzii to investigate evolutionary relationships and genomewide patterns of nucleotide diversity and differentiation among lineages. Despite extensive shared polymorphism and limited differentiation from the other taxa, Bamako clusters apart from the other taxa, and forms a maximally supported clade in neighbour-joining trees based on whole-genome data (including inversions) or solely on collinear regions. Nevertheless, FST outlier analysis reveals that the majority of differentiated regions between Bamako and typical An. gambiae are located inside chromosomal inversions, consistent with their role in the ecological isolation of Bamako. Exceptionally differentiated genomic regions were enriched for genes implicated in nervous system development and signalling. Candidate genes associated with a selective sweep unique to Bamako contain substitutions not observed in sympatric samples of the other taxa, and several insecticide resistance gene alleles shared between Bamako and other taxa segregate at sharply different frequencies in these samples. Bamako represents a useful window into the initial stages of ecological and genomic differentiation from sympatric populations in this important group of malaria vectors.


Assuntos
Anopheles/genética , Inversão Cromossômica , Ecótipo , Genoma de Inseto , Alelos , Animais , Resistência a Inseticidas/genética , Mosquitos Vetores/genética , Polimorfismo Genético
8.
Malar J ; 15: 191, 2016 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-27059057

RESUMO

BACKGROUND: Malaria remains a pervasive public health problem in sub-Saharan West Africa. Here mosquito vector populations were explored across four sites in Mali and the Republic of Guinea (Guinea Conakry). The study samples the major ecological zones of malaria-endemic regions in West Africa within a relatively small distance. METHODS: Mosquito vectors were sampled from larval pools, adult indoor resting sites, and indoor and outdoor human-host seeking adults. Mosquitoes were collected at sites spanning 350 km that represented arid savannah, humid savannah, semi-forest and deep forest ecological zones, in areas where little was previously known about malaria vector populations. 1425 mosquito samples were analysed by molecular assays to determine species, genetic attributes, blood meal sources and Plasmodium infection status. RESULTS: Anopheles gambiae and Anopheles coluzzii were the major anophelines represented in all collections across the ecological zones, with A. coluzzii predominant in the arid savannah and A. gambiae in the more humid sites. The use of multiple collection methodologies across the sampling sites allows assessment of potential collection bias of the different methods. The L1014F kdr insecticide resistance mutation (kdr-w) is found at high frequency across all study sites. This mutation appears to have swept almost to fixation, from low frequencies 6 years earlier, despite the absence of widespread insecticide use for vector control. Rates of human feeding are very high across ecological zones, with only small fractions of animal derived blood meals in the arid and humid savannah. About 30 % of freshly blood-fed mosquitoes were positive for Plasmodium falciparum presence, while the rate of mosquitoes with established infections was an order of magnitude lower. CONCLUSIONS: The study represents detailed vector characterization from an understudied area in West Africa with endemic malaria transmission. The deep forest study site includes the epicenter of the 2014 Ebola virus epidemic. With new malaria control interventions planned in Guinea, these data provide a baseline measure and an opportunity to assess the outcome of future interventions.


Assuntos
Anopheles/classificação , Anopheles/crescimento & desenvolvimento , Insetos Vetores , Plasmodium falciparum/isolamento & purificação , Animais , Anopheles/genética , Gâmbia , Guiné , Humanos , Mali
9.
PLoS Pathog ; 9(11): e1003790, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24278025

RESUMO

A new generation of strategies is evolving that aim to block malaria transmission by employing genetically modified vectors or mosquito pathogens or symbionts that express anti-parasite molecules. Whilst transgenic technologies have advanced rapidly, there is still a paucity of effector molecules with potent anti-malaria activity whose expression does not cause detrimental effects on mosquito fitness. Our objective was to examine a wide range of antimicrobial peptides (AMPs) for their toxic effects on Plasmodium and anopheline mosquitoes. Specifically targeting early sporogonic stages, we initially screened AMPs for toxicity against a mosquito cell line and P. berghei ookinetes. Promising candidate AMPs were fed to mosquitoes to monitor adverse fitness effects, and their efficacy in blocking rodent malaria infection in Anopheles stephensi was assessed. This was followed by tests to determine their activity against P. falciparum in An. gambiae, initially using laboratory cultures to infect mosquitoes, then culminating in preliminary assays in the field using gametocytes and mosquitoes collected from the same area in Mali, West Africa. From a range of 33 molecules, six AMPs able to block Plasmodium development were identified: Anoplin, Duramycin, Mastoparan X, Melittin, TP10 and Vida3. With the exception of Anoplin and Mastoparan X, these AMPs were also toxic to an An. gambiae cell line at a concentration of 25 µM. However, when tested in mosquito blood feeds, they did not reduce mosquito longevity or egg production at concentrations of 50 µM. Peptides effective against cultured ookinetes were less effective when tested in vivo and differences in efficacy against P. berghei and P. falciparum were seen. From the range of molecules tested, the majority of effective AMPs were derived from bee/wasp venoms.


Assuntos
Anopheles/parasitologia , Antimaláricos , Peptídeos Catiônicos Antimicrobianos , Venenos de Abelha , Abelhas/química , Proteínas de Insetos , Malária Falciparum/tratamento farmacológico , Oocistos , Plasmodium berghei , Plasmodium falciparum , Animais , Antimaláricos/química , Antimaláricos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Venenos de Abelha/química , Venenos de Abelha/farmacologia , Linhagem Celular , Feminino , Humanos , Proteínas de Insetos/química , Proteínas de Insetos/farmacologia , Masculino , Camundongos
10.
Malar J ; 13: 19, 2014 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-24418094

RESUMO

BACKGROUND: Effective mating between laboratory-reared males and wild females is paramount to the success of vector control strategies aiming to decrease disease transmission via the release of sterile or genetically modified male mosquitoes. However mosquito colonization and laboratory maintenance have the potential to negatively affect male genotypic and phenotypic quality through inbreeding and selection, which in turn can decrease male mating competitiveness in the field. To date, very little is known about the impact of those evolutionary forces on the reproductive biology of mosquito colonies and how they ultimately affect male reproductive fitness. METHODS: Here several male reproductive physiological traits likely to be affected by inbreeding and selection following colonization and laboratory rearing were examined. Sperm length, and accessory gland and testes size were compared in male progeny from field-collected females and laboratory strains of Anopheles gambiae sensu stricto colonized from one to over 25 years ago. These traits were also compared in the parental and sequentially derived, genetically modified strains produced using a two-phase genetic transformation system. Finally, genetic crosses were performed between strains in order to distinguish the effects of inbreeding and selection on reproductive traits. RESULTS: Sperm length was found to steadily decrease with the age of mosquito colonies but was recovered in refreshed strains and crosses between inbred strains therefore incriminating inbreeding costs. In contrast, testes size progressively increased with colony age, whilst accessory gland size quickly decreased in males from colonies of all ages. The lack of heterosis in response to crossing and strain refreshing in the latter two reproductive traits suggests selection for insectary conditions. CONCLUSIONS: These results show that inbreeding and selection differentially affect reproductive traits in laboratory strains overtime and that heterotic 'supermales' could be used to rescue some male reproductive characteristics. Further experiments are needed to establish the exact relationship between sperm length, accessory gland and testes size, and male reproductive success in the laboratory and field settings.


Assuntos
Anopheles/fisiologia , Endogamia , Insetos Vetores/fisiologia , Seleção Genética , Animais , Anopheles/anatomia & histologia , Anopheles/genética , Insetos Vetores/anatomia & histologia , Insetos Vetores/genética , Masculino , Fenótipo , Reprodução , Espermatozoides/fisiologia , Testículo/anatomia & histologia
11.
Proc Natl Acad Sci U S A ; 108(1): 244-9, 2011 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-21173248

RESUMO

The African malaria mosquito Anopheles gambiae is diversifying into ecotypes known as M and S forms. This process is thought to be promoted by adaptation to different larval habitats, but its genetic underpinnings remain elusive. To identify candidate targets of divergent natural selection in M and S, we performed genomewide scanning in paired population samples from Mali, followed by resequencing and genotyping from five locations in West, Central, and East Africa. Genome scans revealed a significant peak of M-S divergence on chromosome 3L, overlapping five known or suspected immune response genes. Resequencing implicated a selective target at or near the TEP1 gene, whose complement C3-like product has antiparasitic and antibacterial activity. Sequencing and allele-specific genotyping showed that an allelic variant of TEP1 has been swept to fixation in M samples from Mali and Burkina Faso and is spreading into neighboring Ghana, but is absent from M sampled in Cameroon, and from all sampled S populations. Sequence comparison demonstrates that this allele is related to, but distinct from, TEP1 alleles of known resistance phenotype. Experimental parasite infections of advanced mosquito intercrosses demonstrated a strong association between this TEP1 variant and resistance to both rodent malaria and the native human malaria parasite Plasmodium falciparum. Although malaria parasites may not be direct agents of pathogen-mediated selection at TEP1 in nature--where larvae may be the more vulnerable life stage--the process of adaptive divergence between M and S has potential consequences for malaria transmission.


Assuntos
Adaptação Biológica/genética , Anopheles/genética , Anopheles/parasitologia , Especiação Genética , Imunidade Inata/genética , Proteínas de Insetos/genética , Plasmodium/imunologia , Adaptação Biológica/imunologia , África , Sequência de Aminoácidos , Animais , Anopheles/imunologia , Sequência de Bases , Cruzamentos Genéticos , Componentes do Gene , Genética Populacional , Genótipo , Geografia , Análise em Microsséries , Dados de Sequência Molecular , Alinhamento de Sequência , Análise de Sequência de DNA
12.
Zootaxa ; 3619: 246-74, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-26131476

RESUMO

Two new species within the Anopheles gambiae complex are here described and named. Based on molecular and bionomical evidence, the An. gambiae molecular "M form" is named Anopheles coluzzii Coetzee & Wilkerson sp. n., while the "S form" retains the nominotypical name Anopheles gambiae Giles. Anopheles quadriannulatus is retained for the southern African populations of this species, while the Ethiopian species is named Anopheles amharicus Hunt, Wilkerson & Coetzee sp. n., based on chromosomal, cross-mating and molecular evidence.


Assuntos
Anopheles/anatomia & histologia , Anopheles/classificação , África Subsaariana , Distribuição Animal , Animais , Anopheles/fisiologia , Feminino , Larva/anatomia & histologia , Larva/classificação , Larva/fisiologia , Masculino , Pupa/anatomia & histologia , Pupa/classificação , Pupa/fisiologia , Especificidade da Espécie
13.
Trends Biotechnol ; 41(2): 154-164, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35868886

RESUMO

Engineered gene drives, which bias their own inheritance to increase in frequency in target populations, are being developed to control mosquito malaria vectors. Such mosquitoes can belong to complexes of both vector and nonvector species that can produce fertile interspecific hybrids, making vertical gene drive transfer (VGDT) to sibling species biologically plausible. While VGDT to other vectors could positively impact human health protection goals, VGDT to nonvectors might challenge biodiversity ones. Therefore, environmental risk assessment of gene drive use in species complexes invites more nuanced considerations of target organisms and nontarget organisms than for transgenes not intended to increase in frequency in target populations. Incorporating the concept of target species complexes offers more flexibility when assessing potential impacts from VGDT.


Assuntos
Anopheles , Tecnologia de Impulso Genético , Animais , Humanos , Anopheles/genética , Controle de Mosquitos , Mosquitos Vetores/genética , Transgenes
14.
Heliyon ; 9(11): e21659, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027824

RESUMO

Frequent occurrence of drought, heat, low soil fertility and Striga infestation are the main stress factors reducing maize yield in the Sahel. Adoption of stable multiple stress tolerant maize cultivars in the region is crucial for achieving food security. However, selection of a stable high yielding cultivar is complicated by genotype × environment interaction (GEI) due to differential responses to growing conditions. Eleven extra-early maturing multiple-stress tolerant maize hybrids and two checks arranged in a randomized complete block design was evaluated across nine locations for two years in Mali and Niger. The objectives of this study were to identify (i) stable and high-yielding maize hybrids, and (ii) suitable test locations for selecting promising extra-early maize hybrids. GGE biplot was used for graphical analysis. Significant genotype, location and GEI effects were detected for grain yield and number of ears per plant. EEWQH-13 produced the highest grain yield (3860 kg ha-1) while EEYQH-1 had the poorest yield (2663 kg ha-1) with trial mean of 3395 kg ha-1 for all hybrids. GGE biplot explained 69.6 % of the total variation in grain yield among the hybrids. The polygon view identified EEWQH-13 as the best hybrid across six of the nine test locations. EEPVAH-58 was identified as the most stable high yielding hybrid across the nine test locations followed by EEWQH-16 and EEWQH-13. The nine locations were clustered under two mega-environments (ME1, ME2). Among the nine test locations, Tara and Aderaoua clustered in ME1 were the most suitable ones for selecting promising extra-early maize hybrids for wider adaptation. The three hybrids, EEPVAH-58, EEWQH-16, and EEWQH-13, identified in this study could be recommended for on-farm evaluation to confirm the consistency of their yield performance for possible release and commercialization in Mali and Niger.

15.
Front Bioeng Biotechnol ; 11: 1286694, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38249804

RESUMO

From 2012 to 2023, the Malaria Research and Training Center (MRTC), based out of the University of Sciences, Techniques and Technologies of Bamako (USTTB), was part of the Target Malaria research consortium working towards developing novel gene drive-based tools for controlling populations of malaria vector mosquitoes. As part of this work, Target Malaria Mali has undertaken a range of in-depth engagement activities with the communities where their research is conducted and with other stakeholders nationally. These activities were meant to ensure that the project's activities took place with the agreement of those communities, and that those communities were able to play a role in shaping the project's approach to ensure that its eventual outcomes were in line with their needs and concerns. This paper aims to conduct a critical assessment of those 10 years of stakeholder engagement in order to identify good practices which can inform future engagement work on gene drive research in West Africa. It sets out a range of approaches and practices that enabled the Target Malaria Mali team to engage a variety of stakeholders, to share information, collect feedback, and determine community agreement, in a manner that was inclusive, effective, and culturally appropriate. These can be useful tools for those working on gene drive research and other area-wide vector control methods in West African contexts to ensure that their research is aligned with the interests of the communities who are intended to be its ultimate beneficiaries, and to allow those communities to play a meaningful role in the research process.

16.
PLoS Negl Trop Dis ; 17(11): e0011632, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37967137

RESUMO

BACKGROUND: Onchocerciasis control activities in Mali began in 1975 with vector larviciding carried out by the Onchocerciasis Control Programme (OCP), followed by the distribution of ivermectin from 1998 until the closure of the OCP in 2002. At that time, epidemiological evaluations, using skin snip microscopy and O-150 pool screening PCR in black flies, indicated that the disease had been largely controlled as a public health problem. Ivermectin distribution was nevertheless continued after 2002 in 34 of the 75 health districts in Mali as these were known to still be meso- or hyper-endemic for onchocerciasis. In addition, the onchocerciasis sites known to be hypo-endemic for onchocerciasis benefited from the distribution of ivermectin treatment as part of the mass drug administration (MDA) program for lymphatic filariasis. Various entomological and epidemiological evaluations have now indicated that Mali may have achieved successful interruption of onchocerciasis transmission. METHODS: A series of cross-sectional surveys to update vector breeding sites throughout the endemic areas, followed by a pre-stop ivermectin mass drug administration (Pre-stop MDA) survey, were undertaken in 2019-2020. Based on breeding site findings, historical epidemiological assessments, and vector collection site maps, 18 operational transmission zones (OTZ) were delineated within which a total of 104 first line villages were selected for evaluation. Dried blood spots (DBS) samples were collected from 10,400 children (5-9 years old) from these 104 first line villages and processed for the presence of OV16 antibody using a lab-based rapid diagnostic test. RESULTS: Within the 544 Simulium damnosum s.l. breeding sites visited in all five endemic onchocerciasis endemic regions of Mali 18.01% (98/544) were seen to be active with the presence of at least one stage of S. damnosum. The overall prevalence of OV16 positive children was 0.45% (47/10,400). However, two hotspots were identified: 2.60% (13/500) seroprevalence in the OTZ number 5 in Kayes Region and 1.40% (7/500) in the OTZ number 1 of Sikasso Region. CONCLUSION: These data show that onchocerciasis prevalence in the five endemic regions has declined to levels that indicate that Stop-MDA surveys should be now carried out in most of the OTZ except for one in the Kayes Region. This latter site will need additional ivermectin treatment before reevaluation, and an OTZ in the Sikasso Region requires revaluation before possibly reinitiating MDA.


Assuntos
Oncocercose , Simuliidae , Criança , Animais , Humanos , Pré-Escolar , Oncocercose/tratamento farmacológico , Oncocercose/epidemiologia , Oncocercose/prevenção & controle , Ivermectina/uso terapêutico , Administração Massiva de Medicamentos , Mali/epidemiologia , Estudos Soroepidemiológicos , Estudos Transversais
17.
J Clin Tuberc Other Mycobact Dis ; 33: 100389, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37637324

RESUMO

Background: Contribution of host factors in mediating susceptibility to extrapulmonary tuberculosis is not well understood. Objective: To examine the influence of patient sex on anatomical localization of extrapulmonary tuberculosis. Methods: We conducted a retrospective cross-sectional study in Mali, West Africa. Hospital records of 1,304 suspected cases of extrapulmonary tuberculosis, available in TB Registry of a tertiary tuberculosis referral center from 2019 to 2021, were examined. Results: A total of 1,012 (77.6%) were confirmed to have extrapulmonary tuberculosis with a male to female ratio of 1.59:1. Four clinical forms of EPTB predominated, namely pleural (40.4%), osteoarticular (29.8%), lymph node (12.5%), and abdominal TB (10.3%). We found sex-based differences in anatomical localization of extrapulmonary tuberculosis, with males more likely than females to have pleural TB (OR: 1.51; 95% CI [1.16 to 1.98]). Conversely, being male was associated with 43% and 41% lower odds of having lymph node and abdominal TB, respectively (OR: 0.57 and 0.59). Conclusion: Anatomical sites of extrapulmonary tuberculosis differ by sex with pleural TB being associated with male sex while lymph node and abdominal TB are predominately associated with female sex. Future studies are warranted to understand the role of sex in mediating anatomical site preference of tuberculosis.

18.
Lancet Infect Dis ; 23(11): 1266-1279, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37499679

RESUMO

BACKGROUND: Malaria transmission-blocking vaccines target mosquito-stage parasites and will support elimination programmes. Gamete vaccine Pfs230D1-EPA/Alhydrogel induced superior activity to zygote vaccine Pfs25-EPA/Alhydrogel in malaria-naive US adults. Here, we compared these vaccines in malaria-experienced Malians. METHODS: We did a pilot safety study then double-blind, block-randomised, comparator-controlled main-phase trial in malaria-intense Bancoumana, Mali. 18-50-year-old healthy non-pregnant, non-breastfeeding consenting adult residents were randomly assigned (1:1:1:1) to receive four doses at months 0, 1, 4·5, and 16·5 of either 47 µg Pfs25, 40 µg Pfs230D1 or comparator (Twinrix or Menactra)-all co-administered with normal saline for blinding-or 47 µg Pfs25 plus 40 µg Pfs230D1 co-administered. We documented safety and tolerability (primary endpoint in the as-treated populations) and immunogenicity (secondary endpoint in the as-treated populations: ELISA, standard-membrane-feeding assay, and mosquito direct skin feed assay). This trial is registered at ClinicalTrials.gov, NCT02334462. FINDINGS: Between March 19, and June 2, 2015, we screened 471 individuals. Of 225 enrolled for the pilot and main cohorts, we randomly assigned 25 participants to pilot safety cohort groups of five (20%) to receive a two-dose series of Pfs25-EPA/Alhydrogel (16 µg), Pfs230D1-EPA/Alhydrogel (15 µg) or comparator, followed by Pfs25-EPA/Alhydrogel (16 µg) plus Pfs230D1-EPA/Alhydrogel (15 µg) or comparator plus saline. For the main cohort, we enrolled 200 participants between May 11 and June 2, 2015, to receive a four-dose series of 47 µg Pfs25-EPA/Alhydrogel plus saline (n=50 [25%]; Pfs25), 40 µg Pfs230D1-EPA/Alhydrogel plus saline (n=49 [25%]; Pfs230D1), 47 µg Pfs25-EPA/Alhydrogel plus 40 µg Pfs230D1-EPA/Alhydrogel (n=50 [25%]; Pfs25 plus Pfs230D1), or comparator (Twinrix or Menactra) plus saline (n=51 [25%]). Vaccinations were well tolerated in the pilot safety and main phases. Most vaccinees became seropositive after two Pfs230D1 or three Pfs25 doses; peak titres increased with each dose thereafter (Pfs230D1 geometric mean: 77·8 [95% CI 56·9-106·3], 146·4 [108·3-198·0], and 410·2 [301·6-558·0]; Pfs25 geometric mean 177·7 [130·3-242·4] and 315·7 [209·9-474·6]). Functional activity (mean peak transmission-reducing activity) appeared for Pfs230D1 (74·5% [66·6-82·5]) and Pfs25 plus Pfs230D1 (68·6% [57·3-79·8]), after the third dose and after the fourth dose (88·9% [81·7-96·2] for Pfs230D1 and 85·0% [78·4-91·5] Pfs25 plus Pfs230D1) but not for Pfs25 (58·2% [49·1-67·3] after the third dose and 58·2% [48·5-67·9] after the fourth dose). Pfs230D1 transmission-reducing activity (73·7% [64·1-83·3]) persisted 10 weeks after the fourth dose. Transmission-reducing activity of 80% was estimated at 1659 ELISA units for Pfs25, 218 for Pfs230D1, and 223 for Pfs230D1 plus Pfs25. After 3850 direct skin feed assays, 35 participants (12 Pfs25, eight Pfs230D1, five Pfs25 plus Pfs230D1, and ten comparator) had transmitted parasites at least once. The proportion of positive assays in vaccine groups (Pfs25 33 [3%] of 982 [-0·013 to 0·014], Pfs230D1 22 [2%] of 954 [-0·005 to 0·027], and combination 11 [1%] of 940 [-0·024 to 0·002]) did not differ from that of the comparator (22 [2%] of 974), nor did Pfs230D1 and combination groups differ (-0·024 to 0·001). INTERPRETATION: Pfs230D1 but not Pfs25 vaccine induces durable serum functional activity in Malian adults. Direct skin feed assays detect parasite transmission to mosquitoes but increased event rates are needed to assess vaccine effectiveness. FUNDING: Intramural Research Program of the National Institute of Allergy and Infectious Diseases and US National Institutes of Health.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Vacinas Meningocócicas , Animais , Adulto , Humanos , Adolescente , Adulto Jovem , Pessoa de Meia-Idade , Hidróxido de Alumínio , Plasmodium falciparum , Vacinas Antimaláricas/efeitos adversos , Método Duplo-Cego , Imunogenicidade da Vacina
19.
Malar J ; 11: 358, 2012 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-23107112

RESUMO

BACKGROUND: Indoor residual spraying (IRS) is a primary method of malaria vector control, but its potential impact is constrained by several inherent limitations: spraying must be repeated when insecticide residues decay, householders can tire of the annual imposition and campaign costs are recurrent. Durable lining (DL) can be considered an advanced form of long-lasting IRS where insecticide is gradually released from an aesthetically attractive wall lining material to provide vector control for several years. A multicentre trial was carried out in Equatorial Guinea, Ghana, Mali, South Africa and Vietnam to assess the feasibility, durability, bioefficacy and household acceptability of DL, compared to conventional IRS or insecticide-treated curtains (LLITCs), in a variety of operational settings. METHODS: This study was conducted in 220 households in traditional rural villages over 12-15 months. In all sites, rolls of DL were cut to fit house dimensions and fixed to interior wall surfaces (usually with nails and caps) by trained teams. Acceptability was assessed using a standardized questionnaire covering such topics as installation, exposure reactions, entomology, indoor environment, aesthetics and durability. Bioefficacy of interventions was evaluated using WHO cone bioassay tests at regular intervals throughout the year. RESULTS: The deltamethrin DL demonstrated little to no decline in bioefficacy over 12-15 months, supported by minimal loss of insecticide content. By contrast, IRS displayed a significant decrease in bioactivity by 6 months and full loss after 12 months. The majority of participants in DL households perceived reductions in mosquito density (93%) and biting (82%), but no changes in indoor temperature (83%). Among those households that wanted to retain the DL, 73% cited protective reasons, 20% expressed a desire to keep theirs for decoration and 7% valued both qualities equally. In Equatorial Guinea, when offered a choice of vector control product at the end of the trial (DL, IRS or LLITCs), DL consistently emerged as the most popular intervention regardless of the earlier household allocation. CONCLUSIONS: Just as long-lasting insecticidal nets overcame several of the technical and logistical constraints associated with conventionally treated nets and then went to scale, this study demonstrates the potential of DL to sustain user compliance and overcome the operational challenges associated with IRS.


Assuntos
Habitação , Inseticidas/administração & dosagem , Malária/prevenção & controle , Controle de Mosquitos/métodos , Têxteis , África , Animais , Sudeste Asiático , Preparações de Ação Retardada , Humanos , Inseticidas/efeitos adversos , Nitrilas/administração & dosagem , Nitrilas/efeitos adversos , Aceitação pelo Paciente de Cuidados de Saúde , Piretrinas/administração & dosagem , Piretrinas/efeitos adversos , População Rural , Têxteis/análise
20.
Artigo em Inglês | MEDLINE | ID: mdl-35726222

RESUMO

Western Africa is vulnerable to arboviral disease transmission, having recently experienced major outbreaks of chikungunya, dengue, yellow fever and Zika. However, there have been relatively few studies on the natural history of the two major human arbovirus vectors in this region, Aedes aegypti and Ae. albopictus, potentially limiting the implementation of effective vector control. We systematically searched for and reviewed relevant studies on the behaviour and ecology of Ae. aegypti and Ae. albopictus in Western Africa, published over the last 40 years. We identified 73 relevant studies, over half of which were conducted in Nigeria, Senegal, or Côte d'Ivoire. Most studies investigated the ecology of Ae. aegypti and Ae. albopictus, exploring the impact of seasonality and land cover on mosquito populations and identifying aquatic habitats. This review highlights the adaptation of Ae. albopictus to urban environments and its invasive potential, and the year-round maintenance of Ae. aegypti populations in water storage containers. However, important gaps were identified in the literature on the behaviour of both species, particularly Ae. albopictus. In Western Africa, Ae. aegypti and Ae. albopictus appear to be mainly anthropophilic and to bite predominantly during the day, but further research is needed to confirm this to inform planning of effective vector control strategies. We discuss the public health implications of these findings and comment on the suitability of existing and novel options for control in Western Africa.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA