Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mar Drugs ; 19(10)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34677448

RESUMO

The demand for natural products isolated from microalgae has increased over the last decade and has drawn the attention from the food, cosmetic and nutraceutical industries. Among these natural products, the demand for natural antioxidants as an alternative to synthetic antioxidants has increased. In addition, microalgae combine several advantages for the development of biotechnological applications: high biodiversity, photosynthetic yield, growth, productivity and a metabolic plasticity that can be orientated using culture conditions. Regarding the wide diversity of antioxidant compounds and mode of action combined with the diversity of reactive oxygen species (ROS), this review covers a brief presentation of antioxidant molecules with their role and mode of action, to summarize and evaluate common and recent assays used to assess antioxidant activity of microalgae. The aim is to improve our ability to choose the right assay to assess microalgae antioxidant activity regarding the antioxidant molecules studied.


Assuntos
Antioxidantes/farmacologia , Microalgas/química , Animais , Antioxidantes/química , Organismos Aquáticos , Relação Estrutura-Atividade
2.
Mar Drugs ; 18(2)2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32085557

RESUMO

Twelve microalgae species isolated in tropical lagoons of New Caledonia were screened as a new source of antioxidants. Microalgae were cultivated at two light intensities to investigate their influence on antioxidant capacity. To assess antioxidant property of microalgae extracts, four assays with different modes of action were used: 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azino-bis (3-éthylbenzothiazoline-6-sulphonique) (ABTS), oxygen radical absorbance capacity (ORAC), and thiobabituric acid reactive substances (TBARS). This screening was coupled to pigment analysis to link antioxidant activity and carotenoid content. The results showed that none of the microalgae studied can scavenge DPPH and ABTS radicals, but Chaetoceros sp., Nephroselmis sp., and Nitzschia A sp. have the capacity to scavenge peroxyl radical (ORAC) and Tetraselmis sp., Nitzschia A sp., and Nephroselmis sp. can inhibit lipid peroxidation (TBARS). Carotenoid composition is typical of the studied microalgae and highlight the siphonaxanthin, detected in Nephroselmis sp., as a pigment of interest. It was found that xanthophylls were the major contributors to the peroxyl radical scavenging capacity measured with ORAC assay, but there was no link between carotenoids and inhibition of lipid peroxidation measured with TBARS assay. In addition, the results showed that light intensity has a strong influence on antioxidant capacity of microalgae: Overall, antioxidant activities measured with ORAC assay are better in high light intensity whereas antioxidant activities measured with TBARS assay are better in low light intensity. It suggests that different antioxidant compounds production is related to light intensity.


Assuntos
Antioxidantes/farmacologia , Carotenoides/química , Carotenoides/farmacologia , Microalgas/química , Carotenoides/análise , Peroxidação de Lipídeos/efeitos dos fármacos , Nova Caledônia
3.
Mar Drugs ; 18(9)2020 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-32872415

RESUMO

Nephroselmis sp. was previously identified as a species of interest for its antioxidant properties owing to its high carotenoid content. In addition, nitrogen availability can impact biomass and specific metabolites' production of microalgae. To optimize parameters of antioxidant production, Nephroselmis sp. was cultivated in batch and continuous culture conditions in stirred closed photobioreactors under different nitrogen conditions (N-repletion, N-limitation, and N-starvation). The aim was to determine the influence of nitrogen availability on the peroxyl radical scavenging activity (oxygen radical absorbance capacity (ORAC) assay) and carotenoid content of Nephroselmis sp. Pigment analysis revealed a specific and unusual photosynthetic system with siphonaxanthin-type light harvesting complexes found in primitive green algae, but also high lutein content and xanthophyll cycle pigments (i.e., violaxanthin, antheraxanthin, and zeaxanthin), as observed in most advanced chlorophytes. The results indicated that N-replete conditions enhance carotenoid biosynthesis, which would correspond to a higher antioxidant capacity measured in Nephroselmis sp. Indeed, peroxyl radical scavenging activity and total carotenoids were higher under N-replete conditions and decreased sharply under N-limitation or starvation conditions. Considering individual carotenoids, siphonaxanthin, neoxanthin, xanthophyll cycle pigments, and lycopene followed the same trend as total carotenoids, while ß-carotene and lutein stayed stable regardless of the nitrogen availability. Carotenoid productivities were also higher under N-replete treatment. The peroxyl radical scavenging activity measured with ORAC assay (63.6 to 154.9 µmol TE g-1 DW) and the lutein content (5.22 to 7.97 mg g-1 DW) were within the upper ranges of values reported previously for other microalgae. Furthermore, contents of siphonaxanthin ere 6 to 20% higher than in previous identified sources (siphonous green algae). These results highlight the potential of Nephroselmis sp. as a source of natural antioxidant and as a pigment of interest.


Assuntos
Antioxidantes/metabolismo , Carotenoides/metabolismo , Clorófitas/metabolismo , Microalgas/metabolismo , Nitrogênio/metabolismo , Antioxidantes/farmacologia , Biomassa , Carotenoides/farmacologia , Clorófitas/crescimento & desenvolvimento , Microalgas/crescimento & desenvolvimento , Capacidade de Absorbância de Radicais de Oxigênio , Fatores de Tempo
4.
J Biotechnol ; 325: 312-324, 2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-33038474

RESUMO

A Tetraselmis sp. was selected for its antioxidant activity owing to its high lipid peroxidation inhibition capacity. With the aim to monitor culture conditions to improve antioxidant activity, effects of CO2-induced acidification on Tetraselmis growth, elemental composition, photosynthetic parameters and antioxidant activity were determined. Two pH values were tested (6.5 and 8.5) in batch and continuous cultures in photobioreactors. Acidification enhanced cell growth under both culture methods. However, the microalgae physiological state was healthier at pH 8.5 than at pH 6.5. Indeed, photosynthetic parameters measured with pulse amplitude modulated (PAM) fluorometry showed a decrease in the photosystem II (PSII) efficiency at pH 6.5 in batch culture. Yet, with the exception of the PSII recovering capacity, photosynthetic parameters were similar in continuous culture at both pH. These results suggest that lowering pH through CO2-induced acidification may induce a lower conversion of light to chemical energy especially when coupled with N-limitation and/or under un-balanced culture conditions. The highest antioxidant activity was measured in continuous culture at pH 6.5 with an IC50 of 3.44 ±â€¯0.6 µg mL-1, which is close to the IC50 of reference compounds (trolox and α-tocopherol). In addition, the principal component analysis revealed a strong link between the antioxidant activity and the culture method, the photophysiological state and the nitrogen cell quota and C:N ratio of Tetraselmis sp.. These results highlight Tetraselmis sp. as a species of interest for natural antioxidant production and the potential of PAM fluorometry to monitor culture for production of biomass with a high antioxidant activity.


Assuntos
Antioxidantes , Dióxido de Carbono , Biomassa , Concentração de Íons de Hidrogênio , Fotossíntese
5.
MethodsX ; 7: 101037, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32923376

RESUMO

We describe in the present study a quick and reliable method based on chlorophyll a fluorescence to assess putative algicidal effect of different microalgal extracts. We couple microalgal production under chemostat cultivation mode to continuously produce a given microalgae species (e.g. Dunaliella salina in this study) at a stable physiological state to ease comparison between extracts tested; with a non-destructive method based on chlorophyll a fluorescence. Pulse amplitude modulated (PAM) fluorometry was used to assess over time the effect of different microalgal crude extracts on the efficiency of the photosystem II (PSII) of a tested microalgae (Dunaliella salina). • Microalgal production at stationary phase in stirred closed photobioreactor (PBR) operating in continuous have stable photophysiological parameters, which is a prerequisite to compare the impact of different algicidal compounds. • The combination of both methods, allows to quickly assess the algicidal effect of diverse microalgal (crude) extracts on the PSII efficiency of a tested microalgae. • The method may be used to identify and isolate algicidal molecules affecting algal PSII using a bio-guided isolation protocol.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA