Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Psychiatry ; 28(2): 822-833, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36266569

RESUMO

Autism Spectrum Disorder (ASD) diagnosis remains behavior-based and the median age of diagnosis is ~52 months, nearly 5 years after its first-trimester origin. Accurate and clinically-translatable early-age diagnostics do not exist due to ASD genetic and clinical heterogeneity. Here we collected clinical, diagnostic, and leukocyte RNA data from 240 ASD and typically developing (TD) toddlers (175 toddlers for training and 65 for test). To identify gene expression ASD diagnostic classifiers, we developed 42,840 models composed of 3570 gene expression feature selection sets and 12 classification methods. We found that 742 models had AUC-ROC ≥ 0.8 on both Training and Test sets. Weighted Bayesian model averaging of these 742 models yielded an ensemble classifier model with accurate performance in Training and Test gene expression datasets with ASD diagnostic classification AUC-ROC scores of 85-89% and AUC-PR scores of 84-92%. ASD toddlers with ensemble scores above and below the overall ASD ensemble mean of 0.723 (on a scale of 0 to 1) had similar diagnostic and psychometric scores, but those below this ASD ensemble mean had more prenatal risk events than TD toddlers. Ensemble model feature genes were involved in cell cycle, inflammation/immune response, transcriptional gene regulation, cytokine response, and PI3K-AKT, RAS and Wnt signaling pathways. We additionally collected targeted DNA sequencing smMIPs data on a subset of ASD risk genes from 217 of the 240 ASD and TD toddlers. This DNA sequencing found about the same percentage of SFARI Level 1 and 2 ASD risk gene mutations in TD (12 of 105) as in ASD (13 of 112) toddlers, and classification based only on the presence of mutation in these risk genes performed at a chance level of 49%. By contrast, the leukocyte ensemble gene expression classifier correctly diagnostically classified 88% of TD and ASD toddlers with ASD risk gene mutations. Our ensemble ASD gene expression classifier is diagnostically predictive and replicable across different toddler ages, races, and ethnicities; out-performs a risk gene mutation classifier; and has potential for clinical translation.


Assuntos
Transtorno do Espectro Autista , Humanos , Pré-Escolar , Lactente , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/genética , Teorema de Bayes , Fosfatidilinositol 3-Quinases , Imunidade , Expressão Gênica
2.
Mol Psychiatry ; 26(12): 7641-7651, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34341515

RESUMO

Early detection and intervention are believed to be key to facilitating better outcomes in children with autism, yet the impact of age at treatment start on the outcome is poorly understood. While clinical traits such as language ability have been shown to predict treatment outcome, whether or not and how information at the genomic level can predict treatment outcome is unknown. Leveraging a cohort of toddlers with autism who all received the same standardized intervention at a very young age and provided a blood sample, here we find that very early treatment engagement (i.e., <24 months) leads to greater gains while controlling for time in treatment. Pre-treatment clinical behavioral measures predict 21% of the variance in the rate of skill growth during early intervention. Pre-treatment blood leukocyte gene expression patterns also predict the rate of skill growth, accounting for 13% of the variance in treatment slopes. Results indicated that 295 genes can be prioritized as driving this effect. These treatment-relevant genes highly interact at the protein level, are enriched for differentially histone acetylated genes in autism postmortem cortical tissue, and are normatively highly expressed in a variety of subcortical and cortical areas important for social communication and language development. This work suggests that pre-treatment biological and clinical behavioral characteristics are important for predicting developmental change in the context of early intervention and that individualized pre-treatment biology related to histone acetylation may be key.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Transtorno Autístico/genética , Comunicação , Intervenção Educacional Precoce/métodos , Expressão Gênica , Humanos , Resultado do Tratamento
3.
BMC Genomics ; 22(1): 69, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33478392

RESUMO

BACKGROUND: Both RNA-Seq and sample freeze-thaw are ubiquitous. However, knowledge about the impact of freeze-thaw on downstream analyses is limited. The lack of common quality metrics that are sufficiently sensitive to freeze-thaw and RNA degradation, e.g. the RNA Integrity Score, makes such assessments challenging. RESULTS: Here we quantify the impact of repeated freeze-thaw cycles on the reliability of RNA-Seq by examining poly(A)-enriched and ribosomal RNA depleted RNA-seq from frozen leukocytes drawn from a toddler Autism cohort. To do so, we estimate the relative noise, or percentage of random counts, separating technical replicates. Using this approach we measured noise associated with RIN and freeze-thaw cycles. As expected, RIN does not fully capture sample degradation due to freeze-thaw. We further examined differential expression results and found that three freeze-thaws should extinguish the differential expression reproducibility of similar experiments. Freeze-thaw also resulted in a 3' shift in the read coverage distribution along the gene body of poly(A)-enriched samples compared to ribosomal RNA depleted samples, suggesting that library preparation may exacerbate freeze-thaw-induced sample degradation. CONCLUSION: The use of poly(A)-enrichment for RNA sequencing is pervasive in library preparation of frozen tissue, and thus, it is important during experimental design and data analysis to consider the impact of repeated freeze-thaw cycles on reproducibility.


Assuntos
Criopreservação , RNA , Congelamento , Humanos , Reprodutibilidade dos Testes , Análise de Sequência de RNA
4.
J Pediatr ; 236: 179-188, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33915154

RESUMO

OBJECTIVES: To examine the impact of a new approach, Get SET Early, on the rates of early autism spectrum disorder (ASD) detection and factors that influence the screen-evaluate-treat chain. STUDY DESIGN: After attending Get SET Early training, 203 pediatricians administered 57 603 total screens using the Communication and Symbolic Behavior Scales Infant-Toddler Checklist at 12-, 18-, and 24-month well-baby examinations, and parents designated presence or absence of concern. For screen-positive toddlers, pediatricians specified if the child was being referred for evaluation, and if not, why not. RESULTS: Collapsed across ages, toddlers were evaluated and referred for treatment at a median age of 19 months, and those screened at 12 months (59.4% of sample) by 15 months. Pediatricians referred one-third of screen-positive toddlers for evaluation, citing lack of confidence in the accuracy of screen-positive results as the primary reason for nonreferral. If a parent expressed concerns, referral probability doubled, and the rate of an ASD diagnosis increased by 37%. Of 897 toddlers evaluated, almost one-half were diagnosed as ASD, translating into an ASD prevalence of 1%. CONCLUSIONS: The Get SET Early model was effective at detecting ASD and initiating very early treatment. Results also underscored the need for change in early identification approaches to formally operationalize and incorporate pediatrician judgment and level of parent concern into the process.


Assuntos
Transtorno do Espectro Autista/diagnóstico , Fatores Etários , Transtorno do Espectro Autista/psicologia , Transtorno do Espectro Autista/terapia , Lista de Checagem , Pré-Escolar , Diagnóstico Precoce , Feminino , Humanos , Lactente , Masculino , Programas de Rastreamento , Pais/psicologia , Valor Preditivo dos Testes , Psicometria , Encaminhamento e Consulta
5.
Mol Psychiatry ; 24(1): 88-107, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29934544

RESUMO

Autism spectrum disorder (ASD) has captured the attention of scientists, clinicians and the lay public because of its uncertain origins and striking and unexplained clinical heterogeneity. Here we review genetic, genomic, cellular, postmortem, animal model, and cell model evidence that shows ASD begins in the womb. This evidence leads to a new theory that ASD is a multistage, progressive disorder of brain development, spanning nearly all of prenatal life. ASD can begin as early as the 1st and 2nd trimester with disruption of cell proliferation and differentiation. It continues with disruption of neural migration, laminar disorganization, altered neuron maturation and neurite outgrowth, disruption of synaptogenesis and reduced neural network functioning. Among the most commonly reported high-confidence ASD (hcASD) genes, 94% express during prenatal life and affect these fetal processes in neocortex, amygdala, hippocampus, striatum and cerebellum. A majority of hcASD genes are pleiotropic, and affect proliferation/differentiation and/or synapse development. Proliferation and subsequent fetal stages can also be disrupted by maternal immune activation in the 1st trimester. Commonly implicated pathways, PI3K/AKT and RAS/ERK, are also pleiotropic and affect multiple fetal processes from proliferation through synapse and neural functional development. In different ASD individuals, variation in how and when these pleiotropic pathways are dysregulated, will lead to different, even opposing effects, producing prenatal as well as later neural and clinical heterogeneity. Thus, the pathogenesis of ASD is not set at one point in time and does not reside in one process, but rather is a cascade of prenatal pathogenic processes in the vast majority of ASD toddlers. Despite this new knowledge and theory that ASD biology begins in the womb, current research methods have not provided individualized information: What are the fetal processes and early-age molecular and cellular differences that underlie ASD in each individual child? Without such individualized knowledge, rapid advances in biological-based diagnostic, prognostic, and precision medicine treatments cannot occur. Missing, therefore, is what we call ASD Living Biology. This is a conceptual and paradigm shift towards a focus on the abnormal prenatal processes underlying ASD within each living individual. The concept emphasizes the specific need for foundational knowledge of a living child's development from abnormal prenatal beginnings to early clinical stages. The ASD Living Biology paradigm seeks this knowledge by linking genetic and in vitro prenatal molecular, cellular and neural measurements with in vivo post-natal molecular, neural and clinical presentation and progression in each ASD child. We review the first such study, which confirms the multistage fetal nature of ASD and provides the first in vitro fetal-stage explanation for in vivo early brain overgrowth. Within-child ASD Living Biology is a novel research concept we coin here that advocates the integration of in vitro prenatal and in vivo early post-natal information to generate individualized and group-level explanations, clinically useful prognoses, and precision medicine approaches that are truly beneficial for the individual infant and toddler with ASD.


Assuntos
Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/fisiopatologia , Tonsila do Cerebelo/metabolismo , Animais , Encéfalo/metabolismo , Diferenciação Celular , Proliferação de Células , Feminino , Humanos , Masculino , Fenótipo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia
6.
Am J Hum Genet ; 98(4): 667-79, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-27018473

RESUMO

Genetic studies of autism spectrum disorder (ASD) have established that de novo duplications and deletions contribute to risk. However, ascertainment of structural variants (SVs) has been restricted by the coarse resolution of current approaches. By applying a custom pipeline for SV discovery, genotyping, and de novo assembly to genome sequencing of 235 subjects (71 affected individuals, 26 healthy siblings, and their parents), we compiled an atlas of 29,719 SV loci (5,213/genome), comprising 11 different classes. We found a high diversity of de novo mutations, the majority of which were undetectable by previous methods. In addition, we observed complex mutation clusters where combinations of de novo SVs, nucleotide substitutions, and indels occurred as a single event. We estimate a high rate of structural mutation in humans (20%) and propose that genetic risk for ASD is attributable to an elevated frequency of gene-disrupting de novo SVs, but not an elevated rate of genome rearrangement.


Assuntos
Transtorno do Espectro Autista/genética , Deleção de Genes , Duplicação Gênica , Alelos , Sequência de Aminoácidos , Sequência de Bases , Estudos de Casos e Controles , Criança , Variações do Número de Cópias de DNA , Feminino , Frequência do Gene , Rearranjo Gênico , Loci Gênicos , Genoma Humano , Técnicas de Genotipagem , Humanos , Mutação INDEL , Masculino , Análise em Microsséries , Dados de Sequência Molecular , Linhagem , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
7.
Mol Psychiatry ; 22(6): 820-835, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27378147

RESUMO

Autism spectrum disorders (ASD) are common, complex and heterogeneous neurodevelopmental disorders. Cellular and molecular mechanisms responsible for ASD pathogenesis have been proposed based on genetic studies, brain pathology and imaging, but a major impediment to testing ASD hypotheses is the lack of human cell models. Here, we reprogrammed fibroblasts to generate induced pluripotent stem cells, neural progenitor cells (NPCs) and neurons from ASD individuals with early brain overgrowth and non-ASD controls with normal brain size. ASD-derived NPCs display increased cell proliferation because of dysregulation of a ß-catenin/BRN2 transcriptional cascade. ASD-derived neurons display abnormal neurogenesis and reduced synaptogenesis leading to functional defects in neuronal networks. Interestingly, defects in neuronal networks could be rescued by insulin growth factor 1 (IGF-1), a drug that is currently in clinical trials for ASD. This work demonstrates that selection of ASD subjects based on endophenotypes unraveled biologically relevant pathway disruption and revealed a potential cellular mechanism for the therapeutic effect of IGF-1.


Assuntos
Transtorno Autístico/metabolismo , Transtorno Autístico/patologia , Técnicas de Cultura de Tecidos/métodos , Adolescente , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/fisiopatologia , Encéfalo/metabolismo , Proliferação de Células/genética , Células Cultivadas , Criança , Pré-Escolar , Feminino , Fibroblastos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like I/uso terapêutico , Masculino , Células-Tronco Neurais/metabolismo , Neurogênese , Neurônios/metabolismo , Neurônios/fisiologia , beta Catenina/metabolismo
8.
Dev Psychopathol ; 30(2): 553-569, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28803559

RESUMO

A common theory of autism spectrum disorder (ASD) symptom onset includes toddlers who do not display symptoms until well after age 2, which are termed late-onset ASD cases. Objectives were to analyze differences in clinical phenotype between toddlers identified as ASD at initial evaluations (early diagnosed) versus those initially considered nonspectrum, then later identified as ASD (late diagnosed). Two hundred seventy-three toddlers recruited from the general population based on a failed developmental screening form or parent or physician concerns were followed longitudinally from 12 months and identified as early- and late-diagnosed cases of ASD, language delayed, or typically developing. Toddlers completed common standardized assessments and experimental eye-tracking and observational measures every 9-12 months until age 3. Longitudinal performance on standardized assessments and experimental tests from initial evaluations were compared. Delay in social communication skills was seen in both ASD groups at early-age initial assessment, including increased preference for nonsocial stimuli, increased stereotypic play, reduced exploration, and use of gestures. On standardized psychometric assessments, early-diagnosed toddlers showed more impairment initially while late-diagnosed toddlers showed a slowing in language acquisition. Similar social communication impairments were present at very early ages in both early-detected ASD and so-called late-onset ASD. Data indicate ASD is present whether detected or not by current methods, and development of more sensitive tools is needed.


Assuntos
Transtorno do Espectro Autista/diagnóstico , Diagnóstico Precoce , Desenvolvimento da Linguagem , Habilidades Sociais , Idade de Início , Transtorno do Espectro Autista/fisiopatologia , Pré-Escolar , Humanos , Lactente , Estudos Longitudinais , Masculino
9.
N Engl J Med ; 370(13): 1209-1219, 2014 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-24670167

RESUMO

BACKGROUND: Autism involves early brain overgrowth and dysfunction, which is most strongly evident in the prefrontal cortex. As assessed on pathological analysis, an excess of neurons in the prefrontal cortex among children with autism signals a disturbance in prenatal development and may be concomitant with abnormal cell type and laminar development. METHODS: To systematically examine neocortical architecture during the early years after the onset of autism, we used RNA in situ hybridization with a panel of layer- and cell-type-specific molecular markers to phenotype cortical microstructure. We assayed markers for neurons and glia, along with genes that have been implicated in the risk of autism, in prefrontal, temporal, and occipital neocortical tissue from postmortem samples obtained from children with autism and unaffected children between the ages of 2 and 15 years. RESULTS: We observed focal patches of abnormal laminar cytoarchitecture and cortical disorganization of neurons, but not glia, in prefrontal and temporal cortical tissue from 10 of 11 children with autism and from 1 of 11 unaffected children. We observed heterogeneity between cases with respect to cell types that were most abnormal in the patches and the layers that were most affected by the pathological features. No cortical layer was uniformly spared, with the clearest signs of abnormal expression in layers 4 and 5. Three-dimensional reconstruction of layer markers confirmed the focal geometry and size of patches. CONCLUSIONS: In this small, explorative study, we found focal disruption of cortical laminar architecture in the cortexes of a majority of young children with autism. Our data support a probable dysregulation of layer formation and layer-specific neuronal differentiation at prenatal developmental stages. (Funded by the Simons Foundation and others.).


Assuntos
Transtorno Autístico/patologia , Neocórtex/ultraestrutura , Adolescente , Transtorno Autístico/genética , Biomarcadores/análise , Biomarcadores/metabolismo , Calbindina 1/genética , Contagem de Células , Criança , Pré-Escolar , Crioultramicrotomia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 1/genética , Expressão Gênica , Humanos , Imageamento Tridimensional , Hibridização In Situ , Neocórtex/crescimento & desenvolvimento , Proteínas do Tecido Nervoso/genética , Proteínas de Neurofilamentos/genética , Neurogênese , Neurônios/patologia , Membro 2 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , RNA/genética
10.
Mol Syst Biol ; 11(12): 841, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26668231

RESUMO

Genetic mechanisms underlying abnormal early neural development in toddlers with Autism Spectrum Disorder (ASD) remain uncertain due to the impossibility of direct brain gene expression measurement during critical periods of early development. Recent findings from a multi-tissue study demonstrated high expression of many of the same gene networks between blood and brain tissues, in particular with cell cycle functions. We explored relationships between blood gene expression and total brain volume (TBV) in 142 ASD and control male toddlers. In control toddlers, TBV variation significantly correlated with cell cycle and protein folding gene networks, potentially impacting neuron number and synapse development. In ASD toddlers, their correlations with brain size were lost as a result of considerable changes in network organization, while cell adhesion gene networks significantly correlated with TBV variation. Cell cycle networks detected in blood are highly preserved in the human brain and are upregulated during prenatal states of development. Overall, alterations were more pronounced in bigger brains. We identified 23 candidate genes for brain maldevelopment linked to 32 genes frequently mutated in ASD. The integrated network includes genes that are dysregulated in leukocyte and/or postmortem brain tissue of ASD subjects and belong to signaling pathways regulating cell cycle G1/S and G2/M phase transition. Finally, analyses of the CHD8 subnetwork and altered transcript levels from an independent study of CHD8 suppression further confirmed the central role of genes regulating neurogenesis and cell adhesion processes in ASD brain maldevelopment.


Assuntos
Transtorno do Espectro Autista/genética , Encéfalo/patologia , Proteínas de Ciclo Celular/genética , Redes Reguladoras de Genes , Mutação , Transtorno do Espectro Autista/patologia , Encéfalo/crescimento & desenvolvimento , Adesão Celular , Proteínas de Ciclo Celular/sangue , Pré-Escolar , Biologia Computacional , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Lactente , Masculino
11.
PLoS Genet ; 8(3): e1002592, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22457638

RESUMO

Autism is a highly heritable neurodevelopmental disorder, yet the genetic underpinnings of the disorder are largely unknown. Aberrant brain overgrowth is a well-replicated observation in the autism literature; but association, linkage, and expression studies have not identified genetic factors that explain this trajectory. Few studies have had sufficient statistical power to investigate whole-genome gene expression and genotypic variation in the autistic brain, especially in regions that display the greatest growth abnormality. Previous functional genomic studies have identified possible alterations in transcript levels of genes related to neurodevelopment and immune function. Thus, there is a need for genetic studies involving key brain regions to replicate these findings and solidify the role of particular functional pathways in autism pathogenesis. We therefore sought to identify abnormal brain gene expression patterns via whole-genome analysis of mRNA levels and copy number variations (CNVs) in autistic and control postmortem brain samples. We focused on prefrontal cortex tissue where excess neuron numbers and cortical overgrowth are pronounced in the majority of autism cases. We found evidence for dysregulation in pathways governing cell number, cortical patterning, and differentiation in young autistic prefrontal cortex. In contrast, adult autistic prefrontal cortex showed dysregulation of signaling and repair pathways. Genes regulating cell cycle also exhibited autism-specific CNVs in DNA derived from prefrontal cortex, and these genes were significantly associated with autism in genome-wide association study datasets. Our results suggest that CNVs and age-dependent gene expression changes in autism may reflect distinct pathological processes in the developing versus the mature autistic prefrontal cortex. Our results raise the hypothesis that genetic dysregulation in the developing brain leads to abnormal regional patterning, excess prefrontal neurons, cortical overgrowth, and neural dysfunction in autism.


Assuntos
Fatores Etários , Transtorno Autístico , Variações do Número de Cópias de DNA , Regulação da Expressão Gênica , Córtex Pré-Frontal , Adolescente , Adulto , Transtorno Autístico/genética , Transtorno Autístico/metabolismo , Transtorno Autístico/patologia , Autopsia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular/genética , Criança , Pré-Escolar , Variações do Número de Cópias de DNA/genética , Feminino , Deleção de Genes , Redes Reguladoras de Genes , Genoma Humano , Humanos , Masculino , Pessoa de Meia-Idade , Neurônios/metabolismo , Neurônios/patologia , Córtex Pré-Frontal/crescimento & desenvolvimento , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Transdução de Sinais/genética
12.
medRxiv ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38766085

RESUMO

Phenotypic heterogeneity in early language, intellectual, motor, and adaptive functioning (LIMA) features are amongst the most striking features that distinguish different types of autistic individuals. Yet the current diagnostic criteria uses a single label of autism and implicitly emphasizes what individuals have in common as core social-communicative and restricted repetitive behavior difficulties. Subtype labels based on the non-core LIMA features may help to more meaningfully distinguish types of autisms with differing developmental paths and differential underlying biology. Using relatively large (n=615) publicly available data from early developing (24-68 months) standardized clinical tests tapping LIMA features, we show that stability-based relative cluster validation analysis can identify two robust and replicable clusters in the autism population with high levels of generalization accuracy (98%). These clusters can be described as Type I versus Type II autisms differentiated by relatively high versus low scores on LIMA features. These two types of autisms are also distinguished by different developmental trajectories over the first decade of life. Finally, these two types of autisms reveal striking differences in functional and structural neuroimaging phenotypes and their relationships with gene expression. This work emphasizes the potential importance of stratifying autism by a Type I versus Type II distinction focused on LIMA features and which may be of high prognostic and biological significance.

13.
Nat Commun ; 15(1): 5075, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871689

RESUMO

Language and social symptoms improve with age in some autistic toddlers, but not in others, and such outcome differences are not clearly predictable from clinical scores alone. Here we aim to identify early-age brain alterations in autism that are prognostic of future language ability. Leveraging 372 longitudinal structural MRI scans from 166 autistic toddlers and 109 typical toddlers and controlling for brain size, we find that, compared to typical toddlers, autistic toddlers show differentially larger or thicker temporal and fusiform regions; smaller or thinner inferior frontal lobe and midline structures; larger callosal subregion volume; and smaller cerebellum. Most differences are replicated in an independent cohort of 75 toddlers. These brain alterations improve accuracy for predicting language outcome at 6-month follow-up beyond intake clinical and demographic variables. Temporal, fusiform, and inferior frontal alterations are related to autism symptom severity and cognitive impairments at early intake ages. Among autistic toddlers, brain alterations in social, language and face processing areas enhance the prediction of the child's future language ability.


Assuntos
Transtorno Autístico , Encéfalo , Imageamento por Ressonância Magnética , Humanos , Masculino , Feminino , Pré-Escolar , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Transtorno Autístico/patologia , Transtorno Autístico/diagnóstico por imagem , Lactente , Idioma , Desenvolvimento da Linguagem
14.
Mol Autism ; 15(1): 22, 2024 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-38790065

RESUMO

BACKGROUND: Social affective and communication symptoms are central to autism spectrum disorder (ASD), yet their severity differs across toddlers: Some toddlers with ASD display improving abilities across early ages and develop good social and language skills, while others with "profound" autism have persistently low social, language and cognitive skills and require lifelong care. The biological origins of these opposite ASD social severity subtypes and developmental trajectories are not known. METHODS: Because ASD involves early brain overgrowth and excess neurons, we measured size and growth in 4910 embryonic-stage brain cortical organoids (BCOs) from a total of 10 toddlers with ASD and 6 controls (averaging 196 individual BCOs measured/subject). In a 2021 batch, we measured BCOs from 10 ASD and 5 controls. In a 2022 batch, we  tested replicability of BCO size and growth effects by generating and measuring an independent batch of BCOs from 6 ASD and 4 control subjects. BCO size was analyzed within the context of our large, one-of-a-kind social symptom, social attention, social brain and social and language psychometric normative datasets ranging from N = 266 to N = 1902 toddlers. BCO growth rates were examined by measuring size changes between 1- and 2-months of organoid development. Neurogenesis markers at 2-months were examined at the cellular level. At the molecular level, we measured activity and expression of Ndel1; Ndel1 is a prime target for cell cycle-activated kinases; known to regulate cell cycle, proliferation, neurogenesis, and growth; and known to be involved in neuropsychiatric conditions. RESULTS: At the BCO level, analyses showed BCO size was significantly enlarged by 39% and 41% in ASD in the 2021 and 2022 batches. The larger the embryonic BCO size, the more severe the ASD social symptoms. Correlations between BCO size and social symptoms were r = 0.719 in the 2021 batch and r = 0. 873 in the replication 2022 batch. ASD BCOs grew at an accelerated rate nearly 3 times faster than controls. At the cell level, the two largest ASD BCOs had accelerated neurogenesis. At the molecular level, Ndel1 activity was highly correlated with the growth rate and size of BCOs. Two BCO subtypes were found in ASD toddlers: Those in one subtype had very enlarged BCO size with accelerated rate of growth and neurogenesis; a profound autism clinical phenotype displaying severe social symptoms, reduced social attention, reduced cognitive, very low language and social IQ; and substantially altered growth in specific cortical social, language and sensory regions. Those in a second subtype had milder BCO enlargement and milder social, attention, cognitive, language and cortical differences. LIMITATIONS: Larger samples of ASD toddler-derived BCO and clinical phenotypes may reveal additional ASD embryonic subtypes. CONCLUSIONS: By embryogenesis, the biological bases of two subtypes of ASD social and brain development-profound autism and mild autism-are already present and measurable and involve dysregulated cell proliferation and accelerated neurogenesis and growth. The larger the embryonic BCO size in ASD, the more severe the toddler's social symptoms and the more reduced the social attention, language ability, and IQ, and the more atypical the growth of social and language brain regions.


Assuntos
Transtorno do Espectro Autista , Organoides , Humanos , Transtorno do Espectro Autista/patologia , Transtorno do Espectro Autista/fisiopatologia , Organoides/patologia , Masculino , Feminino , Pré-Escolar , Córtex Cerebral/patologia , Comportamento Social , Tamanho do Órgão , Lactente , Índice de Gravidade de Doença , Encéfalo/patologia
15.
Neuroimage ; 83: 288-93, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23727317

RESUMO

Structural and functional neuroimaging have substantively informed the pathophysiology of numerous adult neurological and psychiatric disorders. While structural neuroimaging is readily acquired in sedated young children, pediatric application of functional neuroimaging has been limited by the behavioral demands of in-scanner task performance. Here, we investigated whether functional magnetic resonance imaging (fMRI) acquired during natural sleep and without experimental stimulation offers a viable strategy for studying young children. We targeted the lengthy epoch of non-rapid eye movement, stage 3 (NREM3) sleep typically observed at sleep onset in sleep-deprived children. Seven healthy, preschool-aged children (24-58 months) were studied, acquiring fMRI measurements of cerebral blood flow (CBF) and of intrinsic connectivity networks (ICNs), with concurrent sleep-stage monitoring. ICN data (T2* fMRI) were reliably obtained during NREM3 sleep; CBF data (arterial spin labeled fMRI) were not reliably obtained, as scanner noises disrupted sleep. Applying independent component analysis (ICA) to T2* data, distinct ICNs were observed which corresponded closely with those reported in the adult literature. Notably, a network associated with orthography in adults was not observed, suggesting that ICNs exhibit a developmental trajectory. We conclude that resting-state fMRI obtained in sleep is a promising paradigm for neurophysiological investigations of young children.


Assuntos
Potenciais de Ação/fisiologia , Encéfalo/fisiologia , Conectoma/métodos , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/fisiologia , Polissonografia/métodos , Fases do Sono/fisiologia , Pré-Escolar , Feminino , Humanos , Masculino , Reprodutibilidade dos Testes , Descanso/fisiologia , Sensibilidade e Especificidade
16.
Brain ; 135(Pt 3): 949-60, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22350062

RESUMO

Failure to develop normal language comprehension is an early warning sign of autism, but the neural mechanisms underlying this signature deficit are unknown. This is because of an almost complete absence of functional studies of the autistic brain during early development. Using functional magnetic resonance imaging, we previously observed a trend for abnormally lateralized temporal responses to language (i.e. greater activation on the right, rather than the expected left) in a small sample (n = 12) of sleeping 2-3 year olds with autism in contrast to typically developing children, a finding also reported in autistic adults and adolescents. It was unclear, however, if findings of atypical laterality would be observed in a larger sample, and at even earlier ages in autism, such as around the first birthday. Answers to these questions would provide the foundation for understanding how neurofunctional defects of autism unfold, and provide a foundation for studies using patterns of brain activation as a functional early biomarker of autism. To begin to examine these issues, a prospective, cross-sectional design was used in which brain activity was measured in a large sample of toddlers (n = 80) during the presentation of a bedtime story during natural sleep. Forty toddlers with autism spectrum disorder and 40 typically developing toddlers ranging in age between 12-48 months participated. Any toddler with autism who participated in the imaging experiment prior to final diagnosis was tracked and diagnoses confirmed at a later age. Results indicated that at-risk toddlers later diagnosed as autistic display deficient left hemisphere response to speech sounds and have abnormally right-lateralized temporal cortex response to language; this defect worsens with age, becoming most severe in autistic 3- and 4-year-olds. Typically developing children show opposite developmental trends with a tendency towards greater temporal cortex response with increasing age and maintenance of left-lateralized activation with age. We have now demonstrated lateralized abnormalities of temporal cortex processing of language in autism across two separate samples, including a large sample of young infants who later are diagnosed with autism, suggesting that this pattern may reflect a fundamental early neural developmental pathology in autism.


Assuntos
Transtorno Autístico/fisiopatologia , Transtorno Autístico/psicologia , Idioma , Lobo Temporal/fisiopatologia , Estimulação Acústica , Pré-Escolar , Interpretação Estatística de Dados , Feminino , Lateralidade Funcional/fisiologia , Humanos , Processamento de Imagem Assistida por Computador , Lactente , Desenvolvimento da Linguagem , Imageamento por Ressonância Magnética , Masculino , Narração , Testes Neuropsicológicos , Escalas de Graduação Psiquiátrica , Psicometria , Fala/fisiologia , Lobo Temporal/crescimento & desenvolvimento
17.
Sci Rep ; 13(1): 20831, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012206

RESUMO

Adults typically exhibit right hemispheric dominance in the processing of faces. In this cross-sectional study, we investigated age-dependent changes in face processing lateralization from infancy to adulthood (1-48 years old; N = 194). We co-registered anatomical and resting state functional Magnetic Resonance Imaging (fMRI) scans of toddlers, children, adolescents, and adults into a common space and examined functional connectivity across the face, as well as place, and object-selective regions identified in adults. As expected, functional connectivity between core face-selective regions was stronger in the right compared to the left hemisphere in adults. Most importantly, the same lateralization was evident in all other age groups (infants, children, adolescents) and appeared only in face-selective regions, and not in place or object-selective regions. These findings suggest that the physiological development of face-selective brain areas may differ from that of object and place-selective areas. Specifically, the functional connectivity of the core-face selective regions exhibits rightward lateralization from infancy, years before these areas develop mature face-selective responses.


Assuntos
Reconhecimento Facial , Lateralidade Funcional , Adulto , Adolescente , Humanos , Lactente , Pré-Escolar , Criança , Adulto Jovem , Pessoa de Meia-Idade , Estudos Transversais , Lateralidade Funcional/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Reconhecimento Facial/fisiologia , Mapeamento Encefálico , Imageamento por Ressonância Magnética/métodos
18.
Autism ; 27(6): 1790-1802, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36629055

RESUMO

LAY ABSTRACT: Delays in autism spectrum disorder identification and access to care could impact developmental outcomes. Although trends are encouraging, children from historically underrepresented minority backgrounds are often identified at later ages and have reduced engagement in services. It is unclear if disparities exist all along the screen-evaluation-treatment chain, or if early detection programs such as Get SET Early that standardize, these steps are effective at ameliorating disparities. As part of the Get SET Early model, primary care providers administered a parent-report screen at well-baby examinations, and parents designated race, ethnicity, and developmental concerns. Toddlers who scored in the range of concern, or whose primary care provider had concerns, were referred for an evaluation. Rates of screening and evaluation engagement within ethnic/racial groups were compared to US Census data. Age at screen, evaluation, and treatment engagement and quantity was compared across groups. Statistical models examined whether key factors such as parent concern were associated with ethnicity or race. No differences were found in the mean age at the first screen, evaluation, or initiation or quantity of behavioral therapy between participants. However, children from historically underrepresented minority backgrounds were more likely to fall into the range of concern on the parent-report screen, their parents expressed developmental concerns more often, and pediatricians were more likely to refer for an evaluation than their White/Not Hispanic counterparts. Overall results suggest that models that support transparent tracking of steps in the screen-evaluation-treatment chain and service referral pipelines may be an effective strategy for ensuring equitable access to care for all children.


Assuntos
Transtorno do Espectro Autista , Lactente , Humanos , Pré-Escolar , Transtorno do Espectro Autista/diagnóstico , Etnicidade , Grupos Minoritários , Pediatras , Acessibilidade aos Serviços de Saúde
19.
Mol Autism ; 14(1): 11, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36899425

RESUMO

BACKGROUND: Social and language abilities are closely intertwined during early typical development. In autism spectrum disorder (ASD), however, deficits in social and language development are early-age core symptoms. We previously reported that superior temporal cortex, a well-established social and language region, shows reduced activation to social affective speech in ASD toddlers; however, the atypical cortical connectivity that accompanies this deviance remains unknown. METHODS: We collected clinical, eye tracking, and resting-state fMRI data from 86 ASD and non-ASD subjects (mean age 2.3 ± 0.7 years). Functional connectivity of left and right superior temporal regions with other cortical regions and correlations between this connectivity and each child's social and language abilities were examined. RESULTS: While there was no group difference in functional connectivity, the connectivity between superior temporal cortex and frontal and parietal regions was significantly correlated with language, communication, and social abilities in non-ASD subjects, but these effects were absent in ASD subjects. Instead, ASD subjects, regardless of different social or nonsocial visual preferences, showed atypical correlations between temporal-visual region connectivity and communication ability (r(49) = 0.55, p < 0.001) and between temporal-precuneus connectivity and expressive language ability (r(49) = 0.58, p < 0.001). LIMITATIONS: The distinct connectivity-behavior correlation patterns may be related to different developmental stages in ASD and non-ASD subjects. The use of a prior 2-year-old template for spatial normalization may not be optimal for a few subjects beyond this age range. CONCLUSIONS: Superior temporal cortex is known to have reduced activation to social affective speech in ASD at early ages, and here we find in ASD toddlers that it also has atypical connectivity with visual and precuneus cortices that is correlated with communication and language ability, a pattern not seen in non-ASD toddlers. This atypicality may be an early-age signature of ASD that also explains why the disorder has deviant early language and social development. Given that these atypical connectivity patterns are also present in older individuals with ASD, we conclude these atypical connectivity patterns persist across age and may explain why successful interventions targeting language and social skills at all ages in ASD are so difficult to achieve.


Assuntos
Transtorno do Espectro Autista , Humanos , Idoso , Lactente , Pré-Escolar , Encéfalo , Mapeamento Encefálico , Lobo Temporal , Imageamento por Ressonância Magnética , Lobo Parietal , Vias Neurais
20.
JAMA Netw Open ; 6(2): e2255125, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36753277

RESUMO

Importance: Caregivers have long captured the attention of their infants by speaking in motherese, a playful speech style characterized by heightened affect. Reduced attention to motherese in toddlers with autism spectrum disorder (ASD) may be a contributor to downstream language and social challenges and could be diagnostically revealing. Objective: To investigate whether attention toward motherese speech can be used as a diagnostic classifier of ASD and is associated with language and social ability. Design, Setting, and Participants: This diagnostic study included toddlers aged 12 to 48 months, spanning ASD and non-ASD diagnostic groups, at a research center. Data were collected from February 2018 to April 2021 and analyzed from April 2021 to March 2022. Exposures: Gaze-contingent eye-tracking test. Main Outcomes and Measures: Using gaze-contingent eye tracking wherein the location of a toddler's fixation triggered a specific movie file, toddlers participated in 1 or more 1-minute eye-tracking tests designed to quantify attention to motherese speech, including motherese vs traffic (ie, noisy vehicles on a highway) and motherese vs techno (ie, abstract shapes with music). Toddlers were also diagnostically and psychometrically evaluated by psychologists. Levels of fixation within motherese and nonmotherese movies and mean number of saccades per second were calculated. Receiver operating characteristic (ROC) curves were used to evaluate optimal fixation cutoff values and associated sensitivity, specificity, positive predictive value (PPV), and negative predictive value. Within the ASD group, toddlers were stratified based on low, middle, or high levels of interest in motherese speech, and associations with social and language abilities were examined. Results: A total of 653 toddlers were included (mean [SD] age, 26.45 [8.37] months; 480 males [73.51%]). Unlike toddlers without ASD, who almost uniformly attended to motherese speech with a median level of 82.25% and 80.75% across the 2 tests, among toddlers with ASD, there was a wide range, spanning 0% to 100%. Both the traffic and techno paradigms were effective diagnostic classifiers, with large between-group effect sizes (eg, ASD vs typical development: Cohen d, 1.0 in the techno paradigm). Across both paradigms, a cutoff value of 30% or less fixation on motherese resulted in an area under the ROC curve (AUC) of 0.733 (95% CI, 0.693-0.773) and 0.761 (95% CI, 0.717-0.804), respectively; specificity of 98% (95% CI, 95%-99%) and 96% (95% CI, 92%-98%), respectively; and PPV of 94% (95% CI, 86%-98%). Reflective of heterogeneity and expected subtypes in ASD, sensitivity was lower at 18% (95% CI, 14%-22%) and 29% (95% CI, 24%-34%), respectively. Combining metrics increased the AUC to 0.841 (95% CI, 0.805-0.877). Toddlers with ASD who showed the lowest levels of attention to motherese speech had weaker social and language abilities. Conclusions and Relevance: In this diagnostic study, a subset of toddlers showed low levels of attention toward motherese speech. When a cutoff level of 30% or less fixation on motherese speech was used, toddlers in this range were diagnostically classified as having ASD with high accuracy. Insight into which toddlers show unusually low levels of attention to motherese may be beneficial not only for early ASD diagnosis and prognosis but also as a possible therapeutic target.


Assuntos
Transtorno do Espectro Autista , Masculino , Lactente , Humanos , Adulto , Transtorno do Espectro Autista/diagnóstico , Fala , Cognição , Curva ROC , Valor Preditivo dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA