RESUMO
BACKGROUND: Nutrient availability during early stages of development (embryogenesis and the first week post-hatch) can have long-term effects on physiological functions and bird metabolism. The embryo develops in a closed structure and depends entirely on the nutrients and energy available in the egg. The aim of this study was to describe the ontogeny of pathways governing hepatic metabolism that mediates many physiological functions in the pHu + and pHu- chicken lines, which are divergently selected for the ultimate pH of meat, a proxy for muscle glycogen stores, and which differ in the nutrient content and composition of eggs. RESULTS: We identified eight clusters of genes showing a common pattern of expression between embryonic day 12 (E12) and day 8 (D8) post-hatch. These clusters were not representative of a specific metabolic pathway or function. On E12 and E14, the majority of genes differentially expressed between the pHu + and pHu- lines were overexpressed in the pHu + line. Conversely, the majority of genes differentially expressed from E18 were overexpressed in the pHu- line. During the metabolic shift at E18, there was a decrease in the expression of genes linked to several metabolic functions (e.g. protein synthesis, autophagy and mitochondrial activity). At hatching (D0), there were two distinct groups of pHu + chicks based on hierarchical clustering; these groups also differed in liver weight and serum parameters (e.g. triglyceride content and creatine kinase activity). At D0 and D8, there was a sex effect for several metabolic pathways. Metabolism appeared to be more active and oriented towards protein synthesis (RPS6) and fatty acid ß-oxidation (ACAA2, ACOX1) in males than in females. In comparison, the genes overexpressed in females were related to carbohydrate metabolism (SLC2A1, SLC2A12, FoxO1, PHKA2, PHKB, PRKAB2 and GYS2). CONCLUSIONS: Our study provides the first detailed description of the evolution of different hepatic metabolic pathways during the early development of embryos and post-hatching chicks. We found a metabolic orientation for the pHu + line towards proteolysis, glycogen degradation, ATP synthesis and autophagy, likely in response to a higher energy requirement compared with pHu- embryos. The metabolic orientations specific to the pHu + and pHu- lines are established very early, probably in relation with their different genetic background and available nutrients.
Assuntos
Galinhas , Fígado , Animais , Galinhas/genética , Galinhas/crescimento & desenvolvimento , Galinhas/metabolismo , Fígado/metabolismo , Fígado/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio , Feminino , Músculos Peitorais/metabolismo , Músculos Peitorais/crescimento & desenvolvimento , Masculino , Perfilação da Expressão Gênica , Embrião de Galinha , Regulação da Expressão Gênica no DesenvolvimentoRESUMO
BACKGROUND: The thermal-manipulation (TM) during egg incubation is a cyclic exposure to hot or cold temperatures during embryogenesis that is associated to long-lasting effects on growth performance, physiology, metabolism and temperature tolerance in birds. An increase of the incubation temperature of Japanese quail eggs affected the embryonic and post-hatch survival, growth, surface temperatures and blood characteristics potentially related to thermoregulation capacities. To gain new insights in the molecular basis of TM in quails, we investigated by RNA-seq the hypothalamus transcriptome of 35 days-old male and female quails that were treated by TM or not (C, control) during embryogenesis and that were exposed (HC) or not (RT) to a 36 °C heat challenge for 7 h before sampling. RESULTS: For males, 76, 27, 47 and 0 genes were differentially expressed in the CHC vs. CRT, CRT vs. TMRT, TMHC vs. TMRT and CHC vs. TMHC comparisons, respectively. For females, 17, 0, 342 and 1 genes were differentially expressed within the same respective comparisons. Inter-individual variability of gene expression response was observed particularly when comparing RT and HC female animals. The differential expression of several genes was corroborated by RT-qPCR analysis. Gene Ontology functional analysis of the differentially expressed genes showed a prevalent enrichment of terms related to cellular responses to stimuli and gene expression regulation in both sexes. Gene Ontology terms related to the membrane transport, the endoplasmic reticulum and mitochondrial functions as well as DNA metabolism and repair were also identified in specific comparisons and sexes. CONCLUSIONS: TM had little to no effect on the regulation of gene expression in the hypothalamus of 35 days-old Japanese quails. However, the consequences of TM on gene expression were revealed by the HC, with sex-specific and common functions altered. The effects of the HC on gene expression were most prominent in TM females with a ~ 20-fold increase of the number of differentially expressed genes, suggesting that TM may enhance the gene response during challenging conditions in female quail hypothalamus. TM may also promote new cellular strategies in females to help coping to the adverse conditions as illustrated by the identification of differentially expressed genes related to the mitochondrial and heat-response functions.
Assuntos
Coturnix , Temperatura Alta , Animais , Galinhas/genética , Coturnix/genética , Desenvolvimento Embrionário , Feminino , Masculino , TranscriptomaRESUMO
The interactions between viruses and actin cytoskeleton have been widely studied. We showed that rotaviruses remodel microfilaments in intestinal cells and demonstrated that this was due to the VP4 spike protein. Microfilaments mainly occur in the apical domain of infected polarized enterocytes and favor the polarized apical exit of viral progeny. The present work aims at the identification of molecular determinants of actin-VP4 interactions. We used various deletion mutants of VP4 that were transfected into Cos-7 cells and analyzed interactions by immunofluorescence confocal microscopy. It has been established that the C-terminal part of VP4 is embedded within viral particles when rotavirus assembles. The use of specific monoclonal antibodies demonstrated that VP4 is expressed in different forms in infected cells: classically as spike on the outer layer of virus particles, but also as free soluble protein in the cytosol. The C terminus of free VP4 was identified as interacting with actin microfilaments. The VP4 actin binding domain is unable to promote microfilament remodeling by itself; the coiled-coil domain is also required in this process. This actin-binding domain was shown to dominate a previously identified peroxisomal targeting signal, located in the three last amino acids of VP4. The newly identified actin-binding domain is highly conserved in rotavirus strains from species A, B, and C, suggesting that actin binding and remodeling is a general strategy for rotavirus exit. This provides a novel mechanism of protein-protein interactions, not involving cell signaling pathways, to facilitate rotavirus exit.IMPORTANCE Rotaviruses are causal agents of acute infantile viral diarrhea. In intestinal cells, in vitro as well as in vivo, virus assembly and exit do not imply cell lysis but rely on an active process in which the cytoskeleton plays a major role. We describe here a novel molecular mechanism by which the rotavirus spike protein VP4 drives actin remodeling. This relies on the fact that VP4 occurs in different forms. Besides its structural function within the virion, a large proportion of VP4 is expressed as free protein. Here, we show that free VP4 possesses a functional actin-binding domain. This domain, in coordination with a coiled-coil domain, promotes actin cytoskeleton remodeling, thereby providing the capacity to destabilize the cell membrane and allow efficient rotavirus exit.
Assuntos
Actinas/química , Actinas/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Rotavirus/metabolismo , Animais , Sítios de Ligação , Células COS , Proteínas do Capsídeo/genética , Linhagem Celular , Chlorocebus aethiops , Microscopia Confocal , Microscopia de Fluorescência , Mutação , Ligação Proteica , Domínios Proteicos , Rotavirus/química , Rotavirus/genéticaRESUMO
The alpha-1 isoform of chicken AMPK situates on the Z-chromosome, in contrast, the other isoforms in birds and the mammalian AMPKα1 are located on the autosomes. The present study aimed to investigate the role of hepatic AMPK signaling in adaptation to nutritional status and the potential sex-specific response in chickens. Hepatic genes and proteins were compared between the two sexes immediately after hatching. From 20d of age, chicks from each sex received feed treatments: Control was fed ad libitum; Fasted was starved for 24â¯h; Refed was fed for 4â¯h after a 24â¯h fasting. As a result, hepatic AMPKα1 mRNA level in males was significantly higher at both ages compared to females, due to the presence of Z-chromosomes. However, this did not make this kinase "male-bias" as it was eventually compensated at a translational level, which was not reported in previous studies. The protein levels and activation of AMPKα were even lower in newly-hatched male compared to female chicks, accompanied with a higher FAS and SREBP-1 gene expressions. Accordingly, hepatic G6PC2 mRNA levels in males were significantly lower associated with lower plasma glucose levels after hatching. Fasting activated hepatic AMPK, which in turn inhibited gene expression of GS, FAS and SREBP-1, and stimulated the downstream G6PC2 in both sexes. These changes recovered after refeeding. In conclusion, AMPK plays a role in adaptation to nutritional environment for both sexes. The Z-linked AMPK did not exert a sex-specific signaling, due to a "translational compensation" of AMPKα1.
Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Galinhas/fisiologia , Jejum , Comportamento Alimentar/fisiologia , Fígado/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Animais , Feminino , Masculino , Fenômenos Fisiológicos da Nutrição , Fatores Sexuais , Transdução de SinaisRESUMO
BACKGROUND: Genomic loci associated with histone marks are typically analyzed by immunoprecipitation of the chromatin followed by quantitative-PCR (ChIP-qPCR) or high throughput sequencing (ChIP-seq). Chromatin can be either cross-linked (X-ChIP) or used in the native state (N-ChIP). Cross-linking of DNA and proteins helps stabilizing their interactions before analysis. Despite X-ChIP is the most commonly used method, muscle tissue fixation is known to be relatively inefficient. Moreover, no protocol described a simple and reliable preparation of skeletal muscle chromatin of sufficient quality for subsequent high-throughput sequencing. Here we aimed to set-up and compare both chromatin preparation methods for a genome-wide analysis of H3K27me3, a broad-peak histone mark, using chicken P. major muscle tissue. RESULTS: Fixed and unfixed chromatin were prepared from chicken muscle tissues (Pectoralis major). Chromatin fixation, shearing by sonication or digestion and immunoprecipitation performed equivalently. High-quality Illumina reads were obtained (q30 > 93%). The bioinformatic analysis of the data was performed using epic, a tool based on SICER, and MACS2. Forty millions of reads were analyzed for both X-ChIP-seq and N-ChIP-seq experiments. Surprisingly, H3K27me3 X-ChIP-seq analysis led to the identification of only 2000 enriched regions compared to about 15,000 regions identified in the case of N-ChIP-seq. N-ChIP-seq peaks were more consistent between replicates compared to X-ChIP-seq. Higher N-ChIP-seq enrichments were confirmed by ChIP-qPCR at the PAX5 and SOX2 loci known to be enriched for H3K27me3 in myotubes and at the loci of common regions of enrichment identified in this study. CONCLUSIONS: Our findings suggest that the preparation of muscle chromatin for ChIP-seq in cross-linked conditions can compromise the systematic analysis of broad histone marks. Therefore, native chromatin preparation should be preferred to cross-linking when a ChIP experiment has to be performed on skeletal muscle tissue, particularly when a broad source signal is considered.
RESUMO
BACKGROUND: In the current context of global warming, thermal manipulation of avian embryos has received increasing attention as a strategy to promote heat tolerance in avian species by simply increasing the egg incubation temperature. However, because of their likely epigenetic origin, thermal manipulation effects may last more than one generation with consequences for the poultry industry. In this work, a multigenerational and transgenerational analysis of thermal manipulation during embryogenesis was performed to uncover the long-term effects of such procedure. RESULTS: Thermal manipulation repeated during 4 generations had an effect on hatchability, body weight, and weight of eggs laid in Japanese quails, with some effects increasing in importance over generations. Moreover, the effects on body weight and egg weight could be transmitted transgenerationally, suggesting non-genetic inheritance mechanisms. This hypothesis is reinforced by the observed reversion of the effect on growth after five unexposed generations. Interestingly, a beneficial effect of thermal manipulation on heat tolerance was observed a few days after hatching, but this effect was not transgenerational. CONCLUSIONS: Our multigenerational study showed that thermal conditioning of quail embryos has a beneficial effect on post-hatch heat tolerance hampered by transgenerational but reversible defects on growth. Assuming that no genetic variability underlies these changes, this study provides the first demonstration of epigenetic inheritance of traits induced by environmental temperature modification associated with long-term impacts in an avian species.
RESUMO
Rotaviruses are a major cause of acute gastroenteritis in children worldwide. Early stages of rotavirus assembly in infected cells occur in viroplasms. Confocal microscopy demonstrated that viroplasms associate with lipids and proteins (perilipin A, ADRP) characteristic of lipid droplets (LDs). LD-associated proteins were also found to colocalize with viroplasms containing a rotaviral NSP5-enhanced green fluorescent protein (EGFP) fusion protein and with viroplasm-like structures in uninfected cells coexpressing viral NSP2 and NSP5. Close spatial proximity of NSP5-EGFP and cellular perilipin A was confirmed by fluorescence resonance energy transfer. Viroplasms appear to recruit LD components during the time course of rotavirus infection. NSP5-specific siRNA blocked association of perilipin A with NSP5 in viroplasms. Viral double-stranded RNA (dsRNA), NSP5, and perilipin A cosedimented in low-density gradient fractions of rotavirus-infected cell extracts. Chemical compounds interfering with LD formation (isoproterenol plus isobutylmethylxanthine; triacsin C) decreased the number of viroplasms and inhibited dsRNA replication and the production of infectious progeny virus; this effect correlated with significant protection of cells from virus-associated cytopathicity. Rotaviruses represent a genus of another virus family utilizing LD components for replication, pointing at novel therapeutic targets for these pathogens.
Assuntos
Antivirais/farmacologia , Organelas/efeitos dos fármacos , Organelas/virologia , Rotavirus/efeitos dos fármacos , Rotavirus/fisiologia , Replicação Viral/efeitos dos fármacos , 1-Metil-3-Isobutilxantina/farmacologia , Animais , Proteínas de Transporte , Linhagem Celular , Transferência Ressonante de Energia de Fluorescência , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Isoproterenol/farmacologia , Lipídeos/análise , Microscopia Confocal , Organelas/química , Perilipina-1 , Fosfoproteínas/análise , Triazenos/farmacologia , Proteínas não Estruturais Virais/análiseRESUMO
The White Striping (WS) and Wooden Breast (WB) defects are two myopathic syndromes whose occurrence has recently increased in modern fast-growing broilers. The impact of these defects on the quality of breast meat is very important, as they greatly affect its visual aspect, nutritional value, and processing yields. The research conducted to date has improved our knowledge of the biological processes involved in their occurrence, but no solution has been identified so far to significantly reduce their incidence without affecting growing performance of broilers. This study aims to follow the evolution of molecular phenotypes in relation to both fast-growing rate and the occurrence of defects in order to identify potential biomarkers for diagnostic purposes, but also to improve our understanding of physiological dysregulation involved in the occurrence of WS and WB. This has been achieved through enzymatic, histological, and transcriptional approaches by considering breast muscles from a slow- and a fast-growing line, affected or not by WS and WB. Fast-growing muscles produced more reactive oxygen species (ROS) than slow-growing ones, independently of WS and WB occurrence. Within fast-growing muscles, despite higher mitochondria density, muscles affected by WS or WB defects did not show higher cytochrome oxidase activity (COX) activity, suggesting altered mitochondrial function. Among the markers related to muscle remodeling and regeneration, immunohistochemical staining of FN1, NCAM, and MYH15 was higher in fast- compared to slow-growing muscles, and their amount also increased linearly with the presence and severity of WS and WB defects, making them potential biomarkers to assess accurately their presence and severity. Thanks to an innovative histological technique based on fluorescence intensity measurement, they can be rapidly quantified to estimate the injuries induced in case of WS and WB. The muscular expression of several other genes correlates also positively to the presence and severity of the defects like TGFB1 and CTGF, both involved in the development of connective tissue, or Twist1, known as an inhibitor of myogenesis. Finally, our results suggested that a balance between TGFB1 and PPARG would be essential for fibrosis or adiposis induction and therefore for determining WS and WB phenotypes.
RESUMO
In vertebrates, the embryonic environment is known to affect the development and the health of individuals. In broiler chickens, the thermal-manipulation (TM) of eggs during the incubation period was shown to improve heat tolerance at slaughter age (35 days of age) in association with several modifications at the molecular, metabolic and physiological levels. However, little is known about the Japanese quail (Coturnix japonica), a closely related avian species widely used as a laboratory animal model and farmed for its meat and eggs. Here we developed and characterized a TM procedure (39.5°C and 65% relative humidity, 12 h/d, from days 0 to 13 of incubation) in quails by analyzing its short and long-term effects on zootechnical, physiological and metabolic parameters. Heat-tolerance was tested by a heat challenge (36°C for 7h) at 35 days of age. TM significantly reduced the hatching rate of the animals and increased mortality during the first four weeks of life. At hatching, TM animals were heavier than controls, but lighter at 25 days of age for both sexes. Thirty-five days after hatching, TM decreased the surface temperature of the shank in females, suggesting a modulation of the blood flow to maintain the internal temperature. TM also increased blood partial pressure and oxygen saturation percentage at 35 days of age in females, suggesting a long-term modulation of the respiration physiology. Quails physiologically responded to the heat challenge, with a modification of several hematologic and metabolic parameters, including an increase in plasma corticosterone concentration. Several physiological parameters such as beak surface temperature and blood sodium concentration revealed that TM birds responded differently to the heat challenge compared to controls. Altogether, this first comprehensive characterization of TM in Japanese quail showed durable effects that may affect the response of TM quails to heat.
Assuntos
Regulação da Temperatura Corporal/fisiologia , Coturnix/embriologia , Animais , Antioxidantes/metabolismo , Embrião de Galinha , Galinhas/crescimento & desenvolvimento , Galinhas/fisiologia , Coturnix/crescimento & desenvolvimento , Coturnix/fisiologia , Desenvolvimento Embrionário/fisiologia , Feminino , Gases/sangue , Temperatura Alta , Masculino , Termotolerância/fisiologiaRESUMO
RT-qPCR is the gold standard for candidate gene expression analysis. However, the interpretation of RT-qPCR results depends on the proper use of internal controls, i.e., reference genes. Japanese quail is an agronomic species also used as a laboratory model, but little is known about RT-qPCR reference genes for this species. Thus, we investigated 10 putative reference genes (ACTB, GAPDH, PGK1, RPS7, RPS8, RPL19, RPL32, SDHA, TBP and YWHAZ) in three different female and male quail tissues (liver, brain and pectoral muscle). Gene expression stability was evaluated with three different algorithms: geNorm, NormFinder and BestKeeper. For each tissue, a suitable set of reference genes was defined and validated by a differential analysis of gene expression between females and males (CCNH in brain and RPL19 in pectoral muscle). Collectively, our study led to the identification of suitable reference genes in liver, brain and pectoral muscle for Japanese quail, along with recommendations for the identification of reference gene sets for this species.
Assuntos
Coturnix/genética , Ciclina H/genética , Perfilação da Expressão Gênica/normas , Reação em Cadeia da Polimerase em Tempo Real/normas , Proteínas Ribossômicas/genética , Algoritmos , Animais , Proteínas Aviárias/genética , Encéfalo/metabolismo , Feminino , Regulação da Expressão Gênica , Masculino , Músculo Esquelético/química , Especificidade de Órgãos , Padrões de ReferênciaRESUMO
Changes in gene activity through epigenetic alterations induced by early environmental challenges during embryogenesis are known to impact the phenotype, health, and disease risk of animals. Learning how environmental cues translate into persisting epigenetic memory may open new doors to improve robustness and resilience of developing animals. It has previously been shown that the heat tolerance of male broiler chickens was improved by cyclically elevating egg incubation temperature. The embryonic thermal manipulation enhanced gene expression response in muscle (P. major) when animals were heat challenged at slaughter age, 35 days post-hatch. However, the molecular mechanisms underlying this phenomenon remain unknown. Here, we investigated the genome-wide distribution, in hypothalamus and muscle tissues, of two histone post-translational modifications, H3K4me3 and H3K27me3, known to contribute to environmental memory in eukaryotes. We found 785 H3K4me3 and 148 H3K27me3 differential peaks in the hypothalamus, encompassing genes involved in neurodevelopmental, metabolic, and gene regulation functions. Interestingly, few differences were identified in the muscle tissue for which differential gene expression was previously described. These results demonstrate that the response to embryonic thermal manipulation (TM) in chicken is mediated, at least in part, by epigenetic changes in the hypothalamus that may contribute to the later-life thermal acclimation.
RESUMO
Fast-growing chickens have a limited ability to tolerate high temperatures. Thermal manipulation during embryogenesis (TM) has previously been shown to lower chicken body temperature (Tb) at hatching and to improve thermotolerance until market age, possibly resulting from changes in metabolic regulation. The aim of this study was to evaluate the long-term effects of TM (12 h/d, 39.5°C, 65% RH from d 7 to 16 of embryogenesis vs. 37.8°C, 56% RH continuously) and of a subsequent heat challenge (32°C for 5 h at 34 d) on the mRNA expression of metabolic genes and cell signaling in the Pectoralis major muscle and the liver. Gene expression was analyzed by RT-qPCR in 8 chickens per treatment, characterized by low Tb in the TM groups and high Tb in the control groups. Data were analyzed using the general linear model of SAS considering TM and heat challenge within TM as main effects. TM had significant long-term effects on thyroid hormone metabolism by decreasing the muscle mRNA expression of deiodinase DIO3. Under standard rearing conditions, the expression of several genes involved in the regulation of energy metabolism, such as transcription factor PGC-1α, was affected by TM in the muscle, whereas for other genes regulating mitochondrial function and muscle growth, TM seemed to mitigate the decrease induced by the heat challenge. TM increased DIO2 mRNA expression in the liver (only at 21°C) and reduced the citrate synthase activity involved in the Krebs cycle. The phosphorylation level of p38 Mitogen-activated-protein kinase regulating the cell stress response was higher in the muscle of TM groups compared to controls. In conclusion, markers of energy utilization and growth were either changed by TM in the Pectoralis major muscle and the liver by thermal manipulation during incubation as a possible long-term adaptation limiting energy metabolism, or mitigated during heat challenge.