Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Molecules ; 28(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37298785

RESUMO

Currently, there is renewed interest in using fatty acid soaps as surfactants. Hydroxylated fatty acids are specific fatty acids with a hydroxyl group in the alkyl chain, giving rise to chirality and specific surfactant properties. The most famous hydroxylated fatty acid is 12-hydroxystearic acid (12-HSA), which is widely used in industry and comes from castor oil. A very similar and new hydroxylated fatty acid, 10-hydroxystearic acid (10-HSA), can be easily obtained from oleic acid by using microorganisms. Here, we studied for the first time the self-assembly and foaming properties of R-10-HSA soap in an aqueous solution. A multiscale approach was used by combining microscopy techniques, small-angle neutron scattering, wide-angle X-ray scattering, rheology experiments, and surface tension measurements as a function of temperature. The behavior of R-10-HSA was systematically compared with that of 12-HSA soap. Although multilamellar micron-sized tubes were observed for both R-10-HSA and 12-HSA, the structure of the self-assemblies at the nanoscale was different, which is probably due to the fact that the 12-HSA solutions were racemic mixtures, while the 10-HSA solutions were obtained from a pure R enantiomer. We also demonstrated that stable foams based on R-10-HSA soap can be used for cleaning applications, by studying spore removal on model surfaces in static conditions via foam imbibition.


Assuntos
Descontaminação , Sabões , Sabões/química , Ácidos Graxos/química , Tensoativos/farmacologia , Tensoativos/química , Esporos
2.
Molecules ; 28(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37298812

RESUMO

Here, we describe the behavior of mixtures of stearic acid (SA) and its hydroxylated counterpart 12-hydroxystearic acid (12-HSA) in aqueous mixtures at room temperature as a function of the 12-HSA/SA mole ratio R. The morphologies of the self-assembled aggregates are obtained through a multi-structural approach that combines confocal and cryo-TEM microscopies with small-angle neutron scattering (SANS) and wide-angle X-ray scattering (WAXS) measurements, coupled with rheology measurements. Fatty acids are solubilized by an excess of ethanolamine counterions, so that their heads are negatively charged. A clear trend towards partitioning between the two types of fatty acids is observed, presumably driven by the favorable formation of a H-bond network between hydroxyl OH function on the 12th carbon. For all R, the self-assembled structures are locally lamellar, with bilayers composed of crystallized and strongly interdigitated fatty acids. At high R, multilamellar tubes are formed. The doping via a low amount of SA molecules slightly modifies the dimensions of the tubes and decreases the bilayer rigidity. The solutions have a gel-like behavior. At intermediate R, tubes coexist in solution with helical ribbons. At low R, local partitioning also occurs, and the architecture of the self-assemblies associates the two morphologies of the pure fatty acids systems: they are faceted objects with planar domains enriched in SA molecules, capped with curved domains enriched in 12-HSA molecules. The rigidity of the bilayers is strongly increased, as well their storage modulus. The solutions remain, however, viscous fluids in this regime.


Assuntos
Ácidos Graxos , Ácidos Esteáricos , Temperatura , Ácidos Esteáricos/química , Ácidos Graxos/química , Microscopia , Micelas
3.
Molecules ; 28(17)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37687150

RESUMO

This study examines the structures of soft surfactant-based biomaterials which can be tuned by temperature. More precisely, investigated here is the behavior of stearic acid (SA) and 12-hydroxystearic acid (12-HSA) aqueous mixtures as a function of temperature and the 12-HSA/SA molar ratio (R). Whatever R is, the system exhibits a morphological transition at a given threshold temperature, from multilamellar self-assemblies at low temperature to small micelles at high temperature, as shown by a combination of transmittance measurements, Wide Angle X-ray diffraction (WAXS), small angle neutron scattering (SANS), and differential scanning calorimetry (DSC) experiments. The precise determination of the threshold temperature, which ranges between 20 °C and 50 °C depending on R, allows for the construction of the whole phase diagram of the system as a function of R. At high temperature, the micelles that are formed are oblate for pure SA solutions (R = 0) and prolate for pure 12-HSA solutions (R = 1). In the case of mixtures, there is a progressive continuous transition from oblate to prolate shapes when increasing R, with micelles that are almost purely spherical for R = 0.33.

4.
Angew Chem Int Ed Engl ; 62(16): e202215746, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36728623

RESUMO

A bidentate chiral dithiol (diBINAS) is utilised to bridge Au25 nanoclusters to form oligomers. Separation by size allows the isolation of fractions that are stable thanks to the bidentate nature of the linker. The structure of the products is elucidated by small-angle X-ray scattering and calculated using density functional theory. Additional structural details are studied by diffusion-ordered nuclear magnetic resonance spectroscopy, transmission electron microscopy and matrix-assisted laser desorption/ionization time of flight mass spectrometry. Significant changes in the optical properties are analysed by UV/Vis and fluorescence spectroscopies, with the latter demonstrating a strong emission enhancement. Furthermore, the emergent chiral characteristics are studied by circular dichroism. Due to the geometry constraints of the nanocluster assemblies, diBINAS can be regarded as a templating molecule, taking a step towards the directed self-assembly of metal clusters.

5.
Langmuir ; 38(8): 2538-2549, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35171621

RESUMO

This work reports the feasibility of polybutadiene (PB) cross-linking under UV irradiation in the presence of a linear polymer, cellulose acetate (CA), to form semi-interpenetrating polymer networks at the air-water interface. The thermodynamic properties and the morphology of two-dimensional (2D) CA/PB blends are investigated after UV irradiation and for a wide range of CA volume fractions. A contraction of the mixed Langmuir films is observed independent of the composition, in agreement with that recorded for the individual PB monolayer after cross-linking. The PB network formation is demonstrated by in situ sum-frequency generation spectroscopy on the equivolumic CA/PB mixed film. From Brewster angle microscopy observations, the PB network synthesis does not induce any morphology change at the mesoscopic scale, and all of the mixed films remain homogeneous laterally. In situ neutron reflectometry is used to probe the effect of PB cross-linking on the vertical structure of CA/PB mixed films. For all studied compositions, significant thickening of the films is evidenced, consistent with their contraction ratio. This thickening is accompanied by a partial expulsion of the PB toward the film-air interface, which is attributed to the hydrophobic character of the PB. This phenomenon is stronger for films rich in PB. In particular, the structure of the PB-rich film undergoes a transition from vertically homogeneous to inhomogeneous along the depth. 2D semi-interpenetrating polymer networks can thus be synthesized at the air-water interface with a morphology that is strongly influenced by the polymer-polymer and polymer-environment interactions.

6.
Biomacromolecules ; 23(9): 3517-3524, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-36044601

RESUMO

Nanocelluloses can be used to stabilize oil-water surfaces, forming so-called Pickering emulsions. In this work, we compare the organization of native and mercerized cellulose nanocrystals (CNC-I and CNC-II) adsorbed on the surface of hexadecane droplets dispersed in water at different CNC concentrations. Both types of CNCs have an elongated particle morphology and form a layer strongly adsorbed at the interface. However, while the layer thickness formed with CNC-I is independent of the concentration at 7 nm, CNC-II forms a layer ranging from 9 to 14 nm thick with increasing concentration, as determined using small-angle neutron scattering with contrast-matched experiments. Molecular dynamics (MD) simulations showed a preferred interacting crystallographic plane for both crystalline allomorphs that exposes the CH groups (100 and 010) and is therefore considered hydrophobic. Furthermore, this study suggests that whatever the allomorph, the migration of CNCs to the oil-water interface is spontaneous and irreversible and is driven by both enthalpic and entropic processes.


Assuntos
Celulose , Nanopartículas , Adsorção , Celulose/química , Emulsões/química , Nanopartículas/química , Água/química
7.
Langmuir ; 37(18): 5717-5730, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-33905653

RESUMO

Binary blends of water-insoluble polymers are a versatile strategy to obtain nanostructured films at the air-water interface. However, there are few reported structural studies of such systems in the literature. Depending on the compatibility of the polymers and the role of the air-water interface, one can expect various morphologies. In that context, we probed Langmuir monolayers of cellulose acetate (CA), of deuterated and postoxidized polybutadiene (PBd) and three mixtures of CA/PBd at various concentrations by coupling surface pressure-area isotherms, Brewster angle microscopy (BAM), and neutron reflectometry at the air-water interface to determine their thermodynamic and structural properties. The homogeneity of the films in the vertical direction, averaged laterally over the spatial coherence length of the neutron beam (∼5 µm), was assessed by neutron reflectometry measurements using D2O/H2O subphases contrast-matched to the mixed films. At 5 mN/m, the whole mixed films can be described by a single slightly hydrated thin layer. However, at 15 mN/m, the fit of the reflectivity curves requires a two-layer model consisting of a CA/PBd blend layer in contact with the water, interdiffused with a PBd layer at the interface with air. At intermediate surface pressure (10 mN/m), the determined structure was between those obtained at 5 and 15 mN/m depending on film composition. This PBd enrichment at the air-film interface at high surface pressure, which leads to the PBd depletion in the blend monolayer at the water surface, is attributed to the hydrophobic character of this polymer compared with the predominantly hydrophilic CA.

8.
Soft Matter ; 17(27): 6552-6565, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34151921

RESUMO

In this study, poly(ethylene oxide) monomethyl ether (MPEO) of molecular weight of 5000, 10 000, and 20 000 g mol-1 were grafted onto colloidal silica nanoparticles (NPs) of a 27.6 nm diameter using two distinct "grafting to" processes. The first method was based on the coupling reaction of epoxide-end capped MPEO with amine-functionalized silica NPs, while the second method was based on the condensation of triethoxysilane-terminated MPEO onto the unmodified silica NPs. The influence of PEO molecular weight, grafting process and grafting conditions (temperature, reactant concentration, reaction time) on the PEO grafting density was fully investigated. Thermogravimetric analysis (TGA) was used to determine the grafting density which ranged from 0.12 chains per nm2 using the first approach to 1.02 chains per nm2 when using the second approach. 29Si CP/MAS NMR characterization indirectly revealed that above a grafting density value of 0.3 PEO chains per nm2, a dendri-graft PEO network was built around the silica surface which was composed of PEO chains directly anchored to the silica surface and those grafted to silica NPs by intermediate of >CH-O-Si- bonds. The colloidal stability of the particles during different steps of the grafting process was characterized by small-angle X-ray scattering (SAXS). We have found that the colloidal systems are stable whatever the achieved grafting density due to the strong repulsions between the NPs, with the strength of repulsion increasing with the molecular weight of the grafted MPEO chains.

9.
Soft Matter ; 17(37): 8496-8505, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34474458

RESUMO

We investigate the formation/re-dissociation mechanisms of hybrid complexes made from negatively charged PAA2k coated γ-Fe2O3 nanoparticles (NP) and positively charged polycations (PDADMAC) in aqueous solution in the regime of very high ionic strength (I). When the building blocks are mixed at large ionic strength (1 M NH4Cl), the electrostatic interaction is screened and complexation does not occur. If the ionic strength is then lowered down to a targeted ionic strength Itarget, there is a critical threshold Ic = 0.62 M at which complexation occurs, that is independent of the charge ratio Z and the pathway used to reduce salinity (drop-by-drop mixing or fast mixing). If salt is added back up to 1 M, the transition is not reversible and persistent out-of-equilibrium aggregates are formed. The lifetimes of such aggregates depends on Itarget: the closer Itarget to Ic is, the more difficult it is to dissolve the aggregates. Such peculiar behavior is driven by the inner structure of the complexes that are formed after desalting. When Itarget is far below Ic, strong electrostatic interactions induce the formation of dense, compact and frozen aggregates. Such aggregates can only poorly reorganize further on with time, which makes their dissolution upon resalting almost reversible. Conversely, when Itarget is close to Ic more open aggregates are formed due to weaker electrostatic interactions upon desalting. The system can thus rearrange with time to lower its free energy and reach more stable out-of-equilibrium states which are very difficult to dissociate back upon resalting, even at very high ionic strength.

10.
Langmuir ; 36(29): 8511-8519, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32610020

RESUMO

Thanks to the use of small-angle neutron scattering (SANS), a detailed structural description of thermosensitive polymer-grafted cellulose nanocrystals (CNCs) was obtained and the behavior of aqueous suspensions of these derivatized biosourced particles upon temperature increase was revealed. Although literature data show that the surface grafting of thermosensitive polymers drastically enhances the colloidal properties of CNCs, direct space microscopic investigation techniques fail in providing sufficient structural information on these objects. In the case of CNCs decorated with temperature-sensitive polyetheramines following a peptide coupling reaction, a qualitative and quantitative analysis of SANS spectra shows that CNCs are homogeneously covered by a shell comprising polymer chains in a Gaussian conformation with a thickness equal to their radius of gyration in solution, thus revealing a mushroom regime. An increase of the temperature above the lower critical solution temperature (LCST) of the polyetheramine results in the formation of finite size bundles whose aggregation number depends on the particle concentration and suspension temperature deviation from the LCST. SANS analysis further reveals local changes at the CNC surface corresponding to a release of water molecules and a related denser polymer shell conformation. Noticeably, data show a full reversibility at all length scales when a sample was cooled down to below the LCST after being heated above it. Overall, the results obtained by SANS allow an in-depth structural investigation of derivatized CNCs, which is of high interest for the design of functional materials comprising these biosourced colloids.

11.
Langmuir ; 36(22): 6132-6144, 2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32393027

RESUMO

We show by X-ray and neutron small-angle scattering that gold nanoparticles with controlled sizes and morphologies can be obtained by the metallic reduction of AuCl4- ions trapped in 3D organic molds by X-ray radiolysis. The molds are spherical frozen micelles of polystyrene-b-poly(dimethylaminoethyl methacrylate) (PS-b-PDMAEMA) block copolymer in acidic aqueous solution with a PS spherical core surrounded by a corona of PDMAEMA chains in good solvent. The behavior of micelles is controlled by the [AuCl4-]/[DMAEMA] ratio RAuCl4-/DMAEMA. At low gold concentration, AuCl4- ions condense on the positively charged DMAEMA moieties without changing the behavior of the PDMAEMA chains. At intermediate gold concentration, the ions induce a progressive contraction of the corona's chains and dehydration of micelles. At large gold concentration, the corona becomes a fully dry phase loaded with gold ions, which induces micelle aggregation. Radiolysis of the solution by an intense X-ray beam produces different types of gold nanoparticles with respect to RAuCl4-/DMAEMA and irradiation time. At RAuCl4-/DMAEMA = 0.033, irradiation produces in the first step gold clusters in the micelle corona which in the second step merge to form nanoparticles of a similar size to that of the micelle. Conversely, at RAuCl4-/DMAEMA = 0.33, micelles do not operate as templates but only as nucleation zones and large nanoparticles grow outside the micelles.

12.
Langmuir ; 36(28): 8218-8230, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32585107

RESUMO

Protein adsorption on nanoparticles is an important field of study, particularly with regard to nanomedicine and nanotoxicology. Many factors can influence the composition and structure of the layer(s) of adsorbed proteins, the so-called protein corona. However, the role of protein size has not been specifically investigated, although some evidence has indicated its potential important role in corona composition and structure. To assess the role of protein size, we studied the interactions of hemoproteins (spanning a large size range) with monodisperse silica nanoparticles. We combined various techniques-adsorption isotherms, isothermal titration calorimetry, circular dichroism, and transmission electron cryomicroscopy-to address this issue. Overall, the results show that small proteins behaved as typical model proteins, forming homogeneous monolayers on the nanoparticle surface (protein corona). Their adsorption is purely enthalpy-driven, with subtle structural changes. In contrast, large proteins interact with nanoparticles via entropy-driven mechanisms. Their structure is completely preserved during adsorption, and any given protein can directly bind to several nanoparticles, forming bridges in these newly formed protein-nanoparticle assemblies. Protein size is clearly an overlooked factor that should be integrated into proteomics and toxicological studies.


Assuntos
Nanopartículas , Coroa de Proteína , Adsorção , Proteínas , Dióxido de Silício
13.
Biomacromolecules ; 21(4): 1417-1426, 2020 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-32109357

RESUMO

We show here how the structure of polygalacturonate (polyGalA) hydrogels cross-linked by Ca2+ cations via external gelation controls the loading and release rate of beta-lactoglobulin (BLG), a globular protein. Hydrogels prepared from a polyGalA/BLG solution are found to be similar to those obtained from a polyGalA solution in our previous study (Maire du Poset et al. Biomacromolecules 2019, 20 (7), 2864-2872): they exhibit similar transparencies and gradients of mechanical properties and polyGalA concentrations. The nominal BLG/polyGalA ratio of the mixtures is almost recovered within the whole mixed hydrogel despite such strong concentration gradients, except in the part of the hydrogels with the largest mesh size, where more BLG proteins are present. This gradient enables one to tune the amount of protein loaded within the hydrogel. At a local scale, the proteins are distributed evenly within the hydrogel network, as shown by small-angle neutron scattering (SANS). The release of proteins from hydrogels is driven by Fickian diffusion, and the release rate increases with the mesh size of the network, with a characteristic time of a few hours. The specific structure of these polysaccharide-based hydrogels allows for control of both the dosage and the release rate of the loaded protein and makes them good candidates for use as oral controlled-delivery systems.


Assuntos
Hidrogéis , Lactoglobulinas , Cálcio , Difusão , Espalhamento a Baixo Ângulo
14.
Soft Matter ; 16(7): 1922-1930, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-31995091

RESUMO

The radial density profile of deuterated poly(N,n-propyl acrylamide) shell monomers within core-shell microgels has been studied by small-angle neutron scattering in order to shed light on the origin of their linear thermally-induced swelling. The poly(N-isopropyl methacrylamide) core monomers have been contrast-matched by the H2O/D2O solvent mixture, and the intensity thus provides a direct measurement of the spatial distribution of the shell monomers. Straightforward modelling shows that their structure does not correspond to the expected picture of a well-defined external shell. A multi-shell model solved by a reverse Monte Carlo approach is then applied to extract the monomer density as a function of temperature and of the core crosslinking. It is found that most shell monomers fill the core at high temperatures approaching synthesis conditions of collapsed particles, forming only a dilute corona. As the core monomers tend to swell at lower temperatures, a skeleton of insoluble shell monomers hinders swelling, inducing the progressive linear thermoresponse.

15.
Phys Chem Chem Phys ; 22(5): 2963-2977, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-31956870

RESUMO

The local structure of Fe2+ in Fe2+-polygalacturonic acid (polyGalA) hydrogels has been studied by coupling Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy and molecular dynamics (MD) simulation. The EXAFS fitting results reveal an octahedral coordination geometry of Fe2+ both in aqueous solution and in the hydrogel, with similar Fe-O distances (2.09 ± 0.01 Å in the hydrogel and 2.11 ± 0.01 Å in aqueous solution). The MD simulations evidence that standard empirical force fields are unable to accurately reproduce the EXAFS spectra of Fe2+ in both aqueous solution and hydrogel. Based on the EXAFS distance determinations, we then performed restrained MD simulations of hypothetical octahedral coordination modes of Fe2+ with polyGalA chains. The best agreement between experimental and simulated EXAFS spectra was found when Fe2+ is monodentately coordinated to two carboxylate and two hydroxyl oxygens from a pair of polyGalA chains as well as to two water oxygens in an octahedral coordination geometry compatible with the "egg-box model".

16.
Langmuir ; 35(7): 2692-2701, 2019 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-30719921

RESUMO

During evaporative drying of a colloidal dispersion, the structural behavior at the air-dispersion interface is of particular relevance to the understanding of the consolidation mechanism and the final structural and mechanical properties of the porous media. The drying interface constitutes the region of initial drying stress that, when accumulated over a critical thickness, leads to crack formation. This work presents an experimental study of top-down drying of colloidal silica dispersions with three different sizes (radius 5, 8, and 13 nm). Using specular neutron reflectivity, we focus on the structural evolution at the free drying front of the dispersion with a macroscopic drying surface and demonstrate the existence of a thick concentrated surface layer induced by heterogeneous evaporation. The reflectivity profile contains a strong structure peak due to scattering from particles in the interfacial region, from which the interparticle distance is deduced. A notable advantage of these measurements is the direct extraction of the corresponding dispersion concentration from the critical total reflection edge, providing a straightforward access to a structure-concentration relation during the drying process. The bulk reservoir of this experimental configuration renders it possible to verify the evaporation-diffusion balance to construct the surface layer and also to check reversibility of particle ordering. We follow the structural evolution of this surface layer from a sol to a soft wet-gel that is the precursor of a fragile skin and the onset of significant particle aggregation that precedes formation of the wet-crust. Separate complementary measurements on the structural evolution in the bulk dispersion are also carried out by small-angle neutron scattering, where the particle concentration is also extracted directly from the experimental curves. The two sets of data reveal similar structural evolution with concentration at the interface and in the bulk and an increase in the degree of ordering with the particle size.

17.
Langmuir ; 35(33): 10831-10837, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31333024

RESUMO

Protein adsorption on a surface is generally evaluated in terms of the evolution of the proteins' structures and functions. However, when the surface is that of a nanoparticle, the protein corona formed around it possesses a particular supramolecular structure that gives a "biological identity" to the new object. Little is known about the actual shape of the protein corona. Here, the protein corona formed by the adsorption of model proteins (myoglobin and hemoglobin) on silica nanoparticles was studied. Small-angle neutron scattering and oxygenation studies were combined to assess both the structural and functional impacts of the adsorption on proteins. Large differences in the oxygenation properties could be found while no significant global shape changes were seen after adsorption. Moreover, the structural study showed that the adsorbed proteins form an organized yet discontinuous monolayer around the nanoparticles.


Assuntos
Hemoglobinas/química , Mioglobina/química , Nanopartículas/química , Coroa de Proteína/química , Dióxido de Silício/química , Animais , Cavalos
18.
Biomacromolecules ; 20(7): 2864-2872, 2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-31180649

RESUMO

We show here how the nature of various divalent cations M2+ (Ca2+, Zn2+, or Fe2+) influences the structure and mechanical properties of ionotropic polygalacturonate (polyGal) hydrogels designed by the diffusion of cations along one direction (external gelation). All hydrogels exhibit strong gradients of polyGal and cation concentrations, which are similar for all studied cations with a constant ratio R = [M2+]/[Gal] equal to 0.25, showing that every M2+ cation interacts with four galacturonate (Gal) units all along the gels. The regions of the hydrogels formed in the early stages of the gelation process are also similar for all cations and are homogeneous, with the same characteristic mesh size (75 ± 5 Å, as measured by small angle neutron scattering (SANS)) and the same storage modulus G' (∼5 × 104 Pa). Conversely, in the regions of the gels formed in later stages of the process there exist differences in mechanical properties, turbidity, and local structure from one cation to another. Zn(II)-polyGal and Fe(II)-polyGal hydrogels display mesoscopic heterogeneities, more marked in case of Fe than for Zn, that are not present in Ca(II)-polyGal hydrogels. This comes from the mode and the strength of association between the cation and the Gal unit (bidentate for Ca2+ and monodentate "egg-box" for Zn2+ and Fe2+). Cross-links formed by Zn2+ and Fe2+ have a higher stability (lower ability to untie and reform) that induces the formation of local heterogeneities in the early stages of the gelation process whose size progressively increases during the gel growth, a mechanism that does not occur for cross-links made by Ca2+ that are less stable and enable possible reorganizations between polyGal chains.


Assuntos
Coloides/química , Ácidos Hexurônicos/química , Hidrogéis/química , Cálcio/química , Cátions/química , Reagentes de Ligações Cruzadas/química , Ferro/química , Zinco/química
19.
Langmuir ; 34(7): 2531-2542, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29356546

RESUMO

The formulation pathway and/or the mixing method are known to be relevant in many out-of-equilibrium processes. In this work, we studied the effect of the mixing conditions on the physicochemical properties of poly-ε-caprolactone (PCL) particles prepared by solvent displacement. More specifically, water was added in one shot (fast addition) or drop by drop to PCL solution in tetrahydrofuran (THF) to study the impact of the mixing process on particle properties including size, stability, and crystallinity. Two distinct composition maps representing the Ouzo domain characteristic of the presence of metastable nanoparticles have been established for each mixing method. Polymer nanoparticles are formed in the Ouzo domain according to a nucleation and growth (or aggregation) mechanism. The fast addition promotes a larger nucleation rate, thus favoring the formation of small and uniform particles. For the drop-by-drop addition, for which the polymer solubility gradually decreases, the composition trajectories systematically cross an intermediate unstable region between the solubility limit of the polymer and the Ouzo domain. This leads to heterogeneous nucleation as shown by the formation of larger and less stable particles. Particles formed in the Ouzo domain have semi-crystalline properties. The PCL melting point is decreased with the THF fraction trapped in particles in accordance with Flory's theory for melt crystallization. On the other hand, the degree of crystallinity is constant, around 20% regardless of the THF fraction. No difference between fast and slow addition could be detected on the semi-crystalline properties of the particles which emphasize that thermodynamic rather than kinetic factors drive the polymer crystallization in particles. The recovery of bulk PCL crystallinity after the removal of THF from particles tends to confirm this hypothesis.

20.
Langmuir ; 34(50): 15403-15415, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30421936

RESUMO

The internal structure of nanometric microgels in water has been studied as a function of temperature, cross-linker content, and level of deuteration. Small-angle neutron scattering from poly( N-isopropylmethacrylamide) (volume phase transition ≈ 44 °C) microgel particles of radius well below 100 nm in D2O has been measured. The intensities have been analyzed with a combination of polymer chain scattering and form-free radial monomer volume fraction profiles defined over spherical shells, taking polydispersity in size of the particles determined by atomic force microscopy into account. A reverse Monte Carlo optimization using a limited number of parameters was developed to obtain smoothly decaying profiles in agreement with the experimentally scattered intensities. The results are compared to the swelling curve of microgel particles in the temperature range from 15 to 55 °C obtained from photon correlation spectroscopy (PCS). In addition to hydrodynamic radii measured by PCS, our analysis provides direct information about the internal water content and gradients, the strongly varying steepness of the density profile at the particle-water interface, the total spatial extension of the particles, and the visibility of chains. The model has also been applied to a variation of the cross-linker content, N, N'-methylenebisacrylamide, from 5 to 15 mol %, providing insight on the impact of chain architecture and cross-linking on water uptake and on the definition of the polymer-water interface. The model can easily be generalized to arbitrary monomer contents and types, in particular mixtures of hydrogenated and deuterated species, paving the way to detailed studies of monomer distributions inside more complex microgels, in particular core-shell particles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA