Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Pediatr Blood Cancer ; 69(2): e29401, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34693628

RESUMO

BACKGROUND: Wilms tumor is the most common childhood kidney cancer. Two distinct histological subtypes of Wilms tumor have been described: tumors lacking anaplasia (the favorable subtype) and tumors displaying anaplastic features (the unfavorable subtype). Children with favorable disease generally have a very good prognosis, whereas those with anaplasia are oftentimes refractory to standard treatments and suffer poor outcomes, leading to an unmet clinical need. MYCN dysregulation has been associated with a number of pediatric cancers including Wilms tumor. PROCEDURES: In this context, we undertook a functional genomics approach to uncover novel therapeutic strategies for those patients with anaplastic Wilms tumor. Genomic analysis and in vitro experimentation demonstrate that cell growth can be reduced by modulating MYCN overexpression via bromodomain 4 (BRD4) inhibition in both anaplastic and nonanaplastic Wilms tumor models. RESULTS: We observed a time-dependent reduction of MYCN and MYCC protein levels upon BRD4 inhibition in Wilms tumor cell lines, which led to cell death and proliferation suppression. BRD4 inhibition significantly reduced tumor volumes in Wilms tumor patient-derived xenograft (PDX) mouse models. CONCLUSIONS: We suggest that AZD5153, a novel dual-BRD4 inhibitor, can reduce MYCN levels in both anaplastic and nonanaplastic Wilms tumor cell lines, reduces tumor volume in Wilms tumor PDXs, and should be further explored for its therapeutic potential.


Assuntos
Neoplasias Renais , Tumor de Wilms , Anaplasia/genética , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Criança , Regulação para Baixo , Feminino , Humanos , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Masculino , Camundongos , Proteína Proto-Oncogênica N-Myc/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Tumor de Wilms/tratamento farmacológico , Tumor de Wilms/genética , Tumor de Wilms/metabolismo
3.
Med ; 3(11): 774-791.e7, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36195086

RESUMO

BACKGROUND: Malignant rhabdoid tumors (MRTs) and Wilms' tumors (WTs) are rare and aggressive renal tumors of infants and young children comprising ∼5% of all pediatric cancers. MRTs are among the most genomically stable cancers, and although WTs are genomically heterogeneous, both generally lack therapeutically targetable genetic mutations. METHODS: Comparative protein activity analysis of MRTs (n = 68) and WTs (n = 132) across TCGA and TARGET cohorts, using metaVIPER, revealed elevated exportin 1 (XPO1) inferred activity. In vitro studies were performed on a panel of MRT and WT cell lines to evaluate effects on proliferation and cell-cycle progression following treatment with the selective XPO1 inhibitor selinexor. In vivo anti-tumor activity was assessed in patient-derived xenograft (PDX) models of MRTs and WTs. FINDINGS: metaVIPER analysis identified markedly aberrant activation of XPO1 in MRTs and WTs compared with other tumor types. All MRT and most WT cell lines demonstrated baseline, aberrant XPO1 activity with in vitro sensitivity to selinexor via cell-cycle arrest and induction of apoptosis. In vivo, XPO1 inhibitors significantly abrogated tumor growth in PDX models, inducing effective disease control with sustained treatment. Corroborating human relevance, we present a case report of a child with multiply relapsed WTs with prolonged disease control on selinexor. CONCLUSIONS: We report on a novel systems-biology-based comparative framework to identify non-genetically encoded vulnerabilities in genomically quiescent pediatric cancers. These results have provided preclinical rationale for investigation of XPO1 inhibitors in an upcoming investigator-initiated clinical trial of selinexor in children with MRTs and WTs and offer opportunities for exploration of inferred XPO1 activity as a potential predictive biomarker for response. FUNDING: This work was funded by CureSearch for Children's Cancer, Alan B. Slifka Foundation, NIH (U01 CA217858, S10 OD012351, and S10 OD021764), Michael's Miracle Cure, Hyundai Hope on Wheels, Cannonball Kids Cancer, Conquer Cancer the ASCO Foundation, Cycle for Survival, Paulie Strong Foundation, and the Grayson Fund.


Assuntos
Neoplasias Renais , Criança , Humanos , Pré-Escolar , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias Renais/tratamento farmacológico , Proteína Exportina 1
4.
Blood Adv ; 6(1): 100-107, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34768283

RESUMO

Decrease in DNA dioxygenase activity generated by TET2 gene family is crucial in myelodysplastic syndromes (MDS). The general downregulation of 5-hydroxymethylcytosine (5-hmC) argues for a role of DNA demethylation in MDS beyond TET2 mutations, which albeit frequent, do not convey any prognostic significance. We investigated TETs expression to identify factors which can modulate the impact of mutations and thus 5-hmC levels on clinical phenotypes and prognosis of MDS patients. DNA/RNA-sequencing and 5-hmC data were collected from 1665 patients with MDS and 91 controls. Irrespective of mutations, a significant fraction of MDS patients exhibited lower TET2 expression, whereas 5-hmC levels were not uniformly decreased. In searching for factors explaining compensatory mechanisms, we discovered that TET3 was upregulated in MDS and inversely correlated with TET2 expression in wild-type cases. Although TET2 was reduced across all age groups, TET3 levels were increased in a likely feedback mechanism induced by TET2 dysfunction. This inverse relationship of TET2 and TET3 expression also corresponded to the expression of L-2-hydroxyglutarate dehydrogenase, involved in agonist/antagonist substrate metabolism. Importantly, elevated TET3 levels influenced the clinical phenotype of TET2 deficiency whereby the lack of compensation by TET3 (low TET3 expression) was associated with poor outcomes of TET2 mutant carriers.


Assuntos
Dioxigenases , Síndromes Mielodisplásicas , DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dioxigenases/genética , Humanos , Mutação , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo
5.
Mol Cancer Res ; 19(7): 1146-1155, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33753552

RESUMO

Desmoplastic small round cell tumor (DSRCT) is characterized by the EWSR1-WT1 t(11;22) (p13:q12) translocation. Few additional putative drivers have been identified, and research has suffered from a lack of model systems. Next-generation sequencing (NGS) data from 68 matched tumor-normal samples, whole-genome sequencing data from 10 samples, transcriptomic and affymetrix array data, and a bank of DSRCT patient-derived xenograft (PDX) are presented. EWSR1-WT1 fusions were noted to be simple, balanced events. Recurrent mutations were uncommon, but were noted in TERT (3%), ARID1A (6%), HRAS (5%), and TP53 (3%), and recurrent loss of heterozygosity (LOH) at 11p, 11q, and 16q was identified in 18%, 22%, and 34% of samples, respectively. Comparison of tumor-normal matched versus unmatched analysis suggests overcalling of somatic mutations in prior publications of DSRCT NGS data. Alterations in fibroblast growth factor receptor 4 (FGFR4) were identified in 5 of 68 (7%) of tumor samples, whereas differential overexpression of FGFR4 was confirmed orthogonally using 2 platforms. PDX models harbored the pathognomic EWSR1-WT1 fusion and were highly representative of corresponding tumors. Our analyses confirm DSRCT as a genomically quiet cancer defined by the balanced translocation, t(11;22)(p13:q12), characterized by a paucity of secondary mutations but a significant number of copy number alterations. Against this genomically quiet background, recurrent activating alterations of FGFR4 stood out, and suggest that this receptor tyrosine kinase, also noted to be highly expressed in DSRCT, should be further investigated. Future studies of DSRCT biology and preclinical therapeutic strategies should benefit from the PDX models characterized in this study. IMPLICATIONS: These data describe the general quiescence of the desmoplastic small round cell tumor (DSRCT) genome, present the first available bank of DSRCT model systems, and nominate FGFR4 as a key receptor tyrosine kinase in DSRCT, based on high expression, recurrent amplification, and recurrent activating mutations.


Assuntos
Tumor Desmoplásico de Pequenas Células Redondas/genética , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Reação em Cadeia da Polimerase Multiplex/métodos , Adolescente , Adulto , Linhagem Celular Tumoral , Criança , Variações do Número de Cópias de DNA/genética , Tumor Desmoplásico de Pequenas Células Redondas/metabolismo , Tumor Desmoplásico de Pequenas Células Redondas/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteína EWS de Ligação a RNA/genética , Proteína EWS de Ligação a RNA/metabolismo , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Proteínas WT1/genética , Proteínas WT1/metabolismo , Adulto Jovem
6.
Mol Genet Genomic Med ; 7(6): e683, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31006989

RESUMO

We search for the presence of somatic mutations in 12 genes related to MDS, MPN, and AML in a Brazilian cohort composed of 609 elderly individuals from a census-based sample.


Assuntos
Leucemia Mieloide/genética , Neoplasias/genética , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Brasil/epidemiologia , Estudos de Coortes , Feminino , Hematopoese , Humanos , Leucemia Mieloide/sangue , Leucemia Mieloide/epidemiologia , Masculino , Pessoa de Meia-Idade , Mutação , Neoplasias/sangue , Neoplasias/epidemiologia , Sequenciamento do Exoma/métodos
7.
In Vivo ; 33(1): 277-280, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30587636

RESUMO

BACKGROUND/AIM: Although risk stratification using the Prognostic Scores Systems (IPSS, WPSS and IPSS-R) incorporate key information about prognosis of patients with Myelodysplastic syndromes (MDS), patients classified as low-risk may evolve rapidly and aggressively, despite a "favorable" prognostic stratification. The aim of this study was to identify biomarkers for predicting prognosis, and for better stratification and management of these patients. MATERIALS AND METHODS: Expression of CD34 and p53 in megakaryocytes was examined by immunohistochemistry in 71 MDS patients classified as low-risk. RESULTS: CD34 staining in megakaryocytes was associated with p53 expression (p=0.0166). CD34 and p53 expression were associated to worse overall survival in patients (p=0.0281). CONCLUSION: The presence of CD34 in megakaryocytes is associated with p53 expression and an adverse prognosis for MDS patients.


Assuntos
Antígenos CD34/genética , Síndromes Mielodisplásicas/genética , Prognóstico , Proteína Supressora de Tumor p53/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Megacariócitos/metabolismo , Megacariócitos/patologia , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/metabolismo , Síndromes Mielodisplásicas/patologia , Medição de Risco , Fatores de Risco
8.
Front Oncol ; 8: 32, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29515972

RESUMO

The genetic events associated with transformation of myeloproliferative neoplasms (MPNs) to secondary acute myeloid leukemia (sAML), particularly in the subgroup of essential thrombocythemia (ET) patients, remain incompletely understood. Deep studies using high-throughput methods might lead to a better understanding of genetic landscape of ET patients who transformed to sAML. We performed array-based comparative genomic hybridization (aCGH) and whole exome sequencing (WES) to analyze paired samples from ET and sAML phases. We investigated five patients with previous history of MPN, which four had initial diagnosis of ET (one case harboring JAK2 p.Val617Phe and the remaining three CALR type II p.Lys385fs*47), and one was diagnosed with MPN/myelodysplastic syndrome with thrombocytosis (SF3B1 p.Lys700Glu). All were homogeneously treated with hydroxyurea, but subsequently transformed to sAML (mean time of 6 years/median of 4 years to transformation). Two of them have chromosomal abnormalities, and both acquire 2p gain and 5q deletion at sAML stage. The molecular mechanisms associated with leukemic progression in MPN patients are not clear. Our WES data showed TP53 alterations recurrently observed as mutations (missense and frameshift) and monoallelic loss. On the other hand, aCGH showed novel chromosome abnormalities (+2p and del5q) potentially associated with disease progression. The results reported here add valuable information to the still fragmented molecular basis of ET to sAML evolution. Further studies are necessary to identify minimal deleted/amplified region and genes relevant to sAML transformation.

9.
Leuk Res ; 39(10): 1103-8, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26277372

RESUMO

Myelodysplastic syndromes (MDS) are myeloid malignancies characterized by ineffective hematopoiesis, dysplasia, peripheral cytopenia and increased risk of progression to acute myeloid leukemia. Refractory cytopenia of childhood (RCC) is the most common subtype of pediatric MDS and has overlapping clinical features with viral infections and autoimmune disorders. Mutations in TET2 gene are found in about 20-25% of adult MDS and are associated with a decrease in 5-hydroxymethylcytosine (5-hmC) content. TET2 deregulation and its malignant potential were reported in adult but not in pediatric MDS. We evaluated the gene expression and the presence of mutations in TET2 gene in 19 patients with RCC. TET2 expression level was correlated with 5-hmC amount in DNA and possible regulatory epigenetic mechanisms. One out of 19 pediatric patients with RCC was a carrier of a TET2 mutation. TET2 expression and 5-hmC levels were decreased in patients when compared to a disease-free group. Lower expression was not associated to the presence of mutation or with the status of promoter methylation, but a significant correlation with microRNA-22 expression was found. These findings suggested that TET2 downregulation and low levels of 5-hmC are inversely related to miR-22 expression. The existence of a regulatory loop between microRNA-22 and TET2 may play a role in MDS pathogenesis.


Assuntos
Citosina/análogos & derivados , Proteínas de Ligação a DNA/biossíntese , Regulação da Expressão Gênica/genética , MicroRNAs/genética , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/metabolismo , Proteínas Proto-Oncogênicas/biossíntese , 5-Metilcitosina/análogos & derivados , Adolescente , Estudos de Casos e Controles , Criança , Pré-Escolar , Citosina/biossíntese , Análise Mutacional de DNA , Proteínas de Ligação a DNA/genética , Dioxigenases , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Masculino , Mutação , Reação em Cadeia da Polimerase , Proteínas Proto-Oncogênicas/genética , Transcriptoma
10.
ISRN Oncol ; 2012: 321246, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23056961

RESUMO

In the last decades, cytogenetic and molecular characterizations of hematological disorders at diagnosis and followup have been most valuable for guiding therapeutic decisions and prognosis. Genetic and epigenetic alterations detected by different procedures have been associated to different cancer types and are considered important indicators for disease classification, differential diagnosis, prognosis, response, and individualization of therapy. The search for new biomarkers has been revolutionized by high-throughput technologies. At this point, it seems that we have overcome technological barriers, but we are still far from sorting the biological puzzle. Evidence based on translational research is required for validating novel genetic and epigenetic markers for routine clinical practice. We herein discuss the importance of genetic abnormalities and their molecular pathways in acute myeloid leukemia, myelodysplastic syndromes, and myeloproliferative neoplasms. We also discuss how novel genomic abnormalities may interact and reassess concepts and classifications of myeloid neoplasias.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA