Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mar Drugs ; 21(2)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36827135

RESUMO

Metallocarboxypeptidases are zinc-dependent peptide-hydrolysing enzymes involved in several important physiological and pathological processes. They have been a target of growing interest in the search for natural or synthetic compound binders with biomedical and drug discovery purposes, i.e., with potential as antimicrobials or antiparasitics. Given that marine resources are an extraordinary source of bioactive molecules, we screened marine invertebrates for new inhibitory compounds with such capabilities. In this work, we report the isolation and molecular and functional characterization of NpCI, a novel strong metallocarboxypeptidase inhibitor from the marine snail Nerita peloronta. NpCI was purified until homogeneity using a combination of affinity chromatography and RP-HPLC. It appeared as a 5921.557 Da protein with 53 residues and six disulphide-linked cysteines, displaying a high sequence similarity with NvCI, a carboxypeptidase inhibitor isolated from Nerita versicolor, a mollusc of the same genus. The purified inhibitor was determined to be a slow- and tight-binding inhibitor of bovine CPA (Ki = 1.1·× 10-8 mol/L) and porcine CPB (Ki = 8.15·× 10-8 mol/L) and was not able to inhibit proteases from other mechanistic classes. Importantly, this inhibitor showed antiplasmodial activity against Plasmodium falciparum in an in vitro culture (IC50 = 5.5 µmol/L), reducing parasitaemia mainly by inhibiting the later stages of the parasite's intraerythrocytic cycle whilst having no cytotoxic effects on human fibroblasts. Interestingly, initial attempts with other related proteinaceous carboxypeptidase inhibitors also displayed similar antiplasmodial effects. Coincidentally, in recent years, a metallocarboxypeptidase named PfNna1, which is expressed in the schizont phase during the late intraerythrocytic stage of the parasite's life cycle, has been described. Given that NpCI showed a specific parasiticidal effect on P. falciparum, eliciting pyknotic/dead parasites, our results suggest that this and related inhibitors could be promising starting agents or lead compounds for antimalarial drug discovery strategies.


Assuntos
Antimaláricos , Carboxipeptidases , Plasmodium falciparum , Animais , Bovinos , Humanos , Antimaláricos/farmacologia , Carboxipeptidases/antagonistas & inibidores , Plasmodium falciparum/efeitos dos fármacos , Proteínas/farmacologia , Caramujos/química , Suínos
2.
Mar Drugs ; 17(9)2019 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-31470614

RESUMO

A very powerful proteinaceous inhibitor of metallocarboxypeptidases has been isolated from the marine snail Nerita versicolor and characterized in depth. The most abundant of four, very similar isoforms, NvCla, was taken as reference and N-terminally sequenced to obtain a 372-nucleotide band coding for the protein cDNA. The mature protein contains 53 residues and three disulphide bonds. NvCIa and the other isoforms show an exceptionally high inhibitory capacity of around 1.8 pM for human Carboxypeptidase A1 (hCPA1) and for other A-like members of the M14 CPA subfamily, whereas a twofold decrease in inhibitory potency is observed for carboxypeptidase B-like members as hCPB and hTAFIa. A recombinant form, rNvCI, was produced in high yield and HPLC, mass spectrometry and spectroscopic analyses by CD and NMR indicated its homogeneous, compact and thermally resistant nature. Using antibodies raised with rNvCI and histochemical analyses, a preferential distribution of the inhibitor in the surface regions of the animal body was observed, particularly nearby the open entrance of the shell and gut, suggesting its involvement in biological defense mechanisms. The properties of this strong, small and stable inhibitor of metallocarboxypeptidases envisage potentialities for its direct applicability, as well as leading or minimized forms, in biotechnological/biomedical uses.


Assuntos
Organismos Aquáticos/química , Proteínas/antagonistas & inibidores , Caramujos/química , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação , Clonagem Molecular/métodos , DNA Complementar/metabolismo , Humanos , Especificidade por Substrato
3.
Mar Drugs ; 15(4)2017 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-28430158

RESUMO

Natural products from marine origin constitute a very promising and underexplored source of interesting compounds for modern biotechnological and pharmaceutical industries. However, their evaluation is quite challenging and requires specifically designed assays to reliably identify the compounds of interest in a highly heterogeneous and interfering context. In the present study, we describe a general strategy for the confident identification of tight-binding protease inhibitors in the aqueous extracts of 62 Cuban marine invertebrates, using Plasmodium falciparum hemoglobinases Plasmepsin II and Falcipain 2 as model enzymes. To this end, we first developed a screening strategy that combined enzymatic with interaction-based assays and then validated screening conditions using five reference extracts. Interferences were evaluated and minimized. The results from the massive screening of such extracts, the validation of several hits by a variety of interaction-based assays and the purification and functional characterization of PhPI, a multifunctional and reversible tight-binding inhibitor for Plasmepsin II and Falcipain 2 from the gorgonian Plexaura homomalla, are presented.


Assuntos
Organismos Aquáticos/química , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Cisteína Endopeptidases/metabolismo , Invertebrados/química , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Proteínas de Protozoários/antagonistas & inibidores , Animais , Antimaláricos/química , Antimaláricos/farmacologia , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Cisteína Endopeptidases/química , Plasmodium falciparum/metabolismo , Ligação Proteica
5.
FEBS J ; 290(11): 2968-2992, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36629470

RESUMO

Cyclic di-AMP is an essential signalling molecule in Gram-positive bacteria. This second messenger regulates the osmotic pressure of the cell by interacting directly with the regulatory domains, either RCK_C or CBS domains, of several potassium and osmolyte uptake membrane protein systems. Cyclic di-AMP also targets stand-alone CBS domain proteins such as DarB in Bacillus subtilis and CbpB in Listeria monocytogenes. We show here that the CbpB protein of Group B Streptococcus binds c-di-AMP with a very high affinity. Crystal structures of CbpB reveal the determinants of binding specificity and significant conformational changes occurring upon c-di-AMP binding. Deletion of the cbpB gene alters bacterial growth in low potassium conditions most likely due to a decrease in the amount of ppGpp caused by a loss of interaction between CbpB and Rel, the GTP/GDP pyrophosphokinase.


Assuntos
Proteínas de Transporte , Streptococcus agalactiae , Streptococcus agalactiae/genética , Streptococcus agalactiae/metabolismo , Guanosina Pentafosfato , Guanosina Tetrafosfato , Proteínas de Bactérias/metabolismo , AMP Cíclico , Fosfatos de Dinucleosídeos/metabolismo , Potássio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA