Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
CEUR Workshop Proc ; 2807: K1-K10, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34707469

RESUMO

The objective of this paper is to propose formal definitions for the terms 'protein aggregate' and 'protein-containing complex' such that the descriptions and usages of these terms in biomedical literature are unified and that those portions of reality are correctly represented. To this end, we surveyed the literature to assess the need for a distinction between these entities, then compared the features of usages and definitions found in the literature to the definitions for those terms found in Bioportal ontologies. Based on the results of this comparison, we propose updated definitions for the terms 'protein aggregate' and 'protein-containing complex'. Thus far, we propose the following distinguishing factors: first, that one important difference lies in whether an entity is disposed to change type in response to certain structural alterations, such as dissociation of a continuant part, and second that an important difference lies in the ability of the entity to realize its function after such an event occurs. These distinctions are reflected in the proposed definitions.

2.
J Biomed Semantics ; 7: 15, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27034769

RESUMO

BACKGROUND: There have been relatively few attempts to represent vision or blindness ontologically. This is unsurprising as the related phenomena of sight and blindness are difficult to represent ontologically for a variety of reasons. Blindness has escaped ontological capture at least in part because: blindness or the employment of the term 'blindness' seems to vary from context to context, blindness can present in a myriad of types and degrees, and there is no precedent for representing complex phenomena such as blindness. METHODS: We explore current attempts to represent vision or blindness, and show how these attempts fail at representing subtypes of blindness (viz., color blindness, flash blindness, and inattentional blindness). We examine the results found through a review of current attempts and identify where they have failed. RESULTS: By analyzing our test cases of different types of blindness along with the strengths and weaknesses of previous attempts, we have identified the general features of blindness and vision. We propose an ontological solution to represent vision and blindness, which capitalizes on resources afforded to one who utilizes the Basic Formal Ontology as an upper-level ontology. CONCLUSIONS: The solution we propose here involves specifying the trigger conditions of a disposition as well as the processes that realize that disposition. Once these are specified we can characterize vision as a function that is realized by certain (in this case) biological processes under a range of triggering conditions. When the range of conditions under which the processes can be realized are reduced beyond a certain threshold, we are able to say that blindness is present. We characterize vision as a function that is realized as a seeing process and blindness as a reduction in the conditions under which the sight function is realized. This solution is desirable because it leverages current features of a major upper-level ontology, accurately captures the phenomenon of blindness, and can be implemented in many domain-specific ontologies.


Assuntos
Ontologias Biológicas , Cegueira , Visão Ocular , Animais , Defeitos da Visão Cromática , Humanos
3.
J Biomed Semantics ; 4(1): 42, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24314207

RESUMO

BACKGROUND: We are developing the Neurological Disease Ontology (ND) to provide a framework to enable representation of aspects of neurological diseases that are relevant to their treatment and study. ND is a representational tool that addresses the need for unambiguous annotation, storage, and retrieval of data associated with the treatment and study of neurological diseases. ND is being developed in compliance with the Open Biomedical Ontology Foundry principles and builds upon the paradigm established by the Ontology for General Medical Science (OGMS) for the representation of entities in the domain of disease and medical practice. Initial applications of ND will include the annotation and analysis of large data sets and patient records for Alzheimer's disease, multiple sclerosis, and stroke. DESCRIPTION: ND is implemented in OWL 2 and currently has more than 450 terms that refer to and describe various aspects of neurological diseases. ND directly imports the development version of OGMS, which uses BFO 2. Term development in ND has primarily extended the OGMS terms 'disease', 'diagnosis', 'disease course', and 'disorder'. We have imported and utilize over 700 classes from related ontology efforts including the Foundational Model of Anatomy, Ontology for Biomedical Investigations, and Protein Ontology. ND terms are annotated with ontology metadata such as a label (term name), term editors, textual definition, definition source, curation status, and alternative terms (synonyms). Many terms have logical definitions in addition to these annotations. Current development has focused on the establishment of the upper-level structure of the ND hierarchy, as well as on the representation of Alzheimer's disease, multiple sclerosis, and stroke. The ontology is available as a version-controlled file at http://code.google.com/p/neurological-disease-ontology along with a discussion list and an issue tracker. CONCLUSION: ND seeks to provide a formal foundation for the representation of clinical and research data pertaining to neurological diseases. ND will enable its users to connect data in a robust way with related data that is annotated using other terminologies and ontologies in the biomedical domain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA