Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Ecology ; 94(5): 1186-95, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23858658

RESUMO

Foliose lichens with cyanobacterial bionts (bipartite and tripartite) form a distinct assemblage of epiphytes strongly associated with humid microclimatic conditions in inland British Columbia. Previous research showed that these cyano- and cephalolichen communities are disproportionately abundant and species-rich on conifer saplings beneath Populus compared to beneath other tree species. More revealing, lichens with cyanobacterial bionts were observed beneath Populus even in stands that did not otherwise support them. We experimentally test the hypothesis that this association is due to the interception of glucose-rich nectar that is exuded from Populus extra-floral nectaries (EFN). Using CO2 flux measurements and phospholipid fatty acid (PLFA) analysis with experimental applications of 13C6-labeled glucose, we demonstrate that cyano- and cephalolichens have a strong respiratory response to glucose. Lichens treated with glucose had lower net photosynthesis and higher establishment rates than control thalli. Furthermore, lichens with cyanobacterial bionts rapidly incorporate exogenous 13C into lichen fatty acid tissues. A large proportion of the 13C taken up by the lichens was incorporated into fungal biomarkers, suggesting that the mycobiont absorbed and assimilated the majority of applied 13C6 glucose. Our observations suggest that both cyanolichens and cephalolichens may utilize an exogenous source of glucose, made available by poplar EFNs. The exogenous C may enable these lichens to become established by providing a source of C for fungal respiration despite drought-induced inactivity of the cyanobacterial partner. As such, the mycobiont may adopt an alternative nutritional strategy, using available exogenous carbon to extend its realized niche.


Assuntos
Carbono/metabolismo , Líquens/fisiologia , Árvores/fisiologia , Colúmbia Britânica , Carbono/química , Isótopos de Carbono , Demografia , Ácidos Graxos , Glucose/metabolismo , Fotossíntese
2.
New Phytol ; 195(4): 812-822, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22762452

RESUMO

Desiccation tolerance was quantified in four cyanolichens (Lobaria hallii, Lobaria retigera, Lobaria scrobiculata, Pseudocyphellaria anomala), one cephalolichen (Lobaria pulmonaria) and one chlorolichen (Platismatia glauca) from xeric and mesic, open and closed North American boreal forests. These sympatric epiphytes were exposed to 0%, 33%, 55% and 75% relative humidity with or without medium light (200 µmol m⁻² s⁻¹) for 7 d. Permanent and temporary photoinhibitory damage was recorded as viability measures. All species tolerated well the drying in darkness, but L. hallii and L. retigera, associated with a very humid climate, showed minor damage at the hardest drying (silica gel). Simultaneous exposure to medium light severely aggravated the drying damage at all relative humidity levels. Combined drying-light exposure was particularly devastating for the widespread chloro- and cephalolichens, whereas cyanolichens, including rare old forest species, were fairly resistant. The ability to recover after combined drying-light stress (this study) correlated positively with increasing species-specific water holding capacities (from the literature). Cyanolichens, depending on liquid water and large internal water storage, probably require strong drying-light resistance to handle long periods between hydration events, whereas chlorolichens can regularly maintain their photosynthetic apparatus during frequent and rapid activation by humid air on clear mornings.


Assuntos
Adaptação Fisiológica/efeitos da radiação , Dessecação , Líquens/fisiologia , Líquens/efeitos da radiação , Luz , Árvores/fisiologia , Árvores/efeitos da radiação , Análise de Variância , Colúmbia Britânica , Clima , Ecossistema , Cinética , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Soluções , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA