Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Prosthodont ; 0(0): 0, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37196037

RESUMO

PURPOSE: To evaluate the effect of restoration design on fracture resistance and stress distribution of veneered and monolithic 3-unit zirconia fixed partial dentures (FDPs) using finite element analysis (FEA). MATERIALS AND METHODS: Identical epoxy resin replicas of mandibular second premolar and second molar (to serve as abutment for the 3-unit bridge) were divided into four groups (n = 10): monolithic zirconia (MZ) restorations; conventional layering veneering technique (ZL), heat-pressed technique (ZP), or CAD/CAM lithium disilicate glass ceramic (CAD-on). Specimens were subjected to compressive cyclic loading on the mesio-buccal cusp of the pontic (load range 50 to 600 N; aqueous environment; 500,000 cycles) in a universal testing machine. Data were statistically analyzed at 5% significance level with Fisher exact test and Kaplan-Meier survival analysis. 3D models were constructed in accordance with experimental groups. The stress distribution in each model was analyzed and evaluated according to the location and magnitude of the maximum principal stresses (MPS) using ANSYS software. RESULTS: Specimens from ZL and ZP groups failed at different stages of the 500,000 cycles fatigue, while CAD-on and MZ restorations survived fatigue test. Statistically, there was a significant difference between the groups (P < .001). The MPS were located under the mesial connector in both monolithic and bilayered 3-unit zirconia FDPs. These stresses were found to be higher in monolithic geometries compared to bilayered zirconia FDPs. CONCLUSION: Monolithic 3-unit zirconia and CAD-on zirconia frameworks resulted in superior fracture resistance. Restoration design significantly affected the stress distribution of 3-unit zirconia FDPs.

2.
J Colloid Interface Sci ; 523: 35-44, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29605739

RESUMO

HYPOTHESIS: Superhydrophobic surfaces are often created by fabricating suitable surface structures from low-surface-energy organic materials using processes that are not suitable for large-scale fabrication. Rare earth oxides (REO) exhibit hydrophobic behavior that is unusual among oxides. Solution precursor plasma spray (SPPS) deposition is a rapid, one-step process that can produce ceramic coatings with fine scale columnar structures. Manipulation of the structure of REO coatings through variation in deposition conditions may allow the wetting behavior to be controlled. EXPERIMENTS: Yb2O3 coatings were fabricated via SPPS. Coating structure was investigated by scanning electron microscopy, digital optical microscopy, and x-ray diffraction. The static water contact angle and roll-off angle were measured, and the dynamic impact of water droplets on the coating surface recorded. FINDINGS: Superhydrophobic behavior was observed; the best coating exhibited a water contact angle of ∼163°, a roll-off angle of ∼6°, and complete droplet rebound behavior. All coatings were crystalline Yb2O3, with a nano-scale roughness superimposed on a micron-scale columnar structure. The wetting behaviors of coatings deposited at different standoff distances were correlated with the coating microstructures and surface topographies. The self-cleaning, water flushing and water jetting tests were conducted and further demonstrated the excellent and durable hydrophobicity of the coatings.

3.
Artigo em Inglês | MEDLINE | ID: mdl-26829787

RESUMO

A novel design of piezoelectric ultrasonic transducer is introduced, suitable for operation at temperatures of up to 700 °C-800 °C. Lithium niobate single crystal is chosen as the piezoelectric element primarily due to the high Curie temperature of 1200 °C. A backing element based on a porous ceramic is designed for which the pore volume fraction and average pore diameter in the ceramic matrix can be controlled in the manufacturing process; this enables the acoustic impedance and attenuation to be selected to match their optimal values as predicted by a one-dimensional transducer model of the entire transducer. Porous zirconia is selected as the ceramic matrix material of the backing element to obtain an ultrasonic signal with center frequency of 2.7-3 MHz, and 3-dB bandwidth of 90%-95% at the targeted operating temperature. Acoustic coupling of the piezocrystal to the backing element and matching layer is investigated using commercially available high-temperature adhesives and brazing alloys. The performance of the transducer as a function of temperature is studied. Stable bonding and clear signals were obtained using an aluminum brazing alloy as the bonding agent.


Assuntos
Transdutores , Ultrassom/instrumentação , Desenho de Equipamento , Temperatura Alta , Nióbio , Óxidos
4.
Sci Rep ; 6: 24670, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27091306

RESUMO

This work presents a novel coating technique to manufacture ceramic superhydrophobic coatings rapidly and economically. A rare earth oxide (REO) was selected as the coating material due to its hydrophobic nature, chemical inertness, high temperature stability, and good mechanical properties, and deposited on stainless steel substrates by solution precursor plasma spray (SPPS). The effects of various spraying conditions including standoff distance, torch power, number of torch passes, types of solvent and plasma velocity were investigated. The as-sprayed coating demonstrated a hierarchically structured surface topography, which closely resembles superhydrophobic surfaces found in nature. The water contact angle on the SPPS superhydrophobic coating was up to 65% higher than on smooth REO surfaces.

5.
J Am Chem Soc ; 124(11): 2625-39, 2002 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-11890813

RESUMO

The ability to form molded or patterned metal-containing ceramics with tunable properties is desirable for many applications. In this paper we describe the evolution of a ceramic from a metal-containing polymer in which the variation of pyrolysis conditions facilitates control of ceramic structure and composition, influencing magnetic and mechanical properties. We have found that pyrolysis under nitrogen of a well-characterized cross-linked polyferrocenylsilane network derived from the ring-opening polymerization (ROP) of a spirocyclic [1]ferrocenophane precursor gives shaped macroscopic magnetic ceramics consisting of alpha-Fe nanoparticles embedded in a SiC/C/Si(3)N(4) matrix in greater than 90% yield up to 1000 degrees C. Variation of the pyrolysis temperature and time permitted control over the nucleation and growth of alpha-Fe particles, which ranged in size from around 15 to 700 A, and the crystallization of the surrounding matrix. The ceramics contained smaller alpha-Fe particles when prepared at temperatures lower than 900 degrees C and displayed superparamagnetic behavior, whereas the materials prepared at 1000 degrees C contained larger alpha-Fe particles and were ferromagnetic. This flexibility may be useful for particular materials applications. In addition, the composition of the ceramic was altered by changing the pyrolysis atmosphere to argon, which yielded ceramics that contain Fe(3)Si(5). The ceramics have been characterized by a combination of physical techniques, including powder X-ray diffraction, TEM, reflectance UV-vis/near-IR spectroscopy, elemental analysis, XPS, SQUID magnetometry, Mössbauer spectroscopy, nanoindentation, and SEM. Micromolding of the spirocyclic [1]ferrocenophane precursor within soft lithographically patterned channels housed inside silicon wafers followed by thermal ROP and pyrolysis enabled the formation of predetermined micron scale designs of the magnetic ceramic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA