Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-32601162

RESUMO

Widespread resistance against antimalarial drugs thwarts current efforts for controlling the disease and urges the discovery of new effective treatments. Drug repositioning is increasingly becoming an attractive strategy since it can reduce costs, risks, and time-to-market. Herein, we have used this strategy to identify novel antimalarial hits. We used a comparative in silico chemogenomics approach to select Plasmodium falciparum and Plasmodium vivax proteins as potential drug targets and analyzed them using a computer-assisted drug repositioning pipeline to identify approved drugs with potential antimalarial activity. Among the seven drugs identified as promising antimalarial candidates, the anthracycline epirubicin was selected for further experimental validation. Epirubicin was shown to be potent in vitro against sensitive and multidrug-resistant P. falciparum strains and P. vivax field isolates in the nanomolar range, as well as being effective against an in vivo murine model of Plasmodium yoelii Transmission-blocking activity was observed for epirubicin in vitro and in vivo Finally, using yeast-based haploinsufficiency chemical genomic profiling, we aimed to get insights into the mechanism of action of epirubicin. Beyond the target predicted in silico (a DNA gyrase in the apicoplast), functional assays suggested a GlcNac-1-P-transferase (GPT) enzyme as a potential target. Docking calculations predicted the binding mode of epirubicin with DNA gyrase and GPT proteins. Epirubicin is originally an antitumoral agent and presents associated toxicity. However, its antiplasmodial activity against not only P. falciparum but also P. vivax in different stages of the parasite life cycle supports the use of this drug as a scaffold for hit-to-lead optimization in malaria drug discovery.


Assuntos
Antimaláricos , Malária Vivax , Animais , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Reposicionamento de Medicamentos , Epirubicina/uso terapêutico , Malária Vivax/tratamento farmacológico , Camundongos , Plasmodium falciparum/genética , Plasmodium vivax/genética
3.
Plants (Basel) ; 12(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36840311

RESUMO

Medicinal plants have historically been a source of drugs in multiple applications, including the treatment of malaria infections. The Cabo Verde archipelago harbors a rich diversity of native plants, most of which are used for medicinal purposes. The present study investigated the in vitro antiplasmodial activities of four native plants from Cabo Verde (i.e., Artemisia gorgonum, Lavandula rotundifolia, Sideroxylon marginatum, and Tamarix senegalensis). Traditional preparations of these medicinal plants, namely aqueous extracts (infusions) and ethanolic extracts, were tested against both chloroquine-sensitive (3D7) and chloroquine-resistant (Dd2) Plasmodium falciparum strains using the SYBR Green detection method. The in vitro cytotoxicity was evaluated in Caco-2 and PLP2 cells using a sulforhodamine B colorimetric assay. An ethanolic extract of A. gorgonum and infusions of T. senegalensis exhibited high antiplasmodial activities (EC50 < 5 µg/mL) without cytotoxicity (GI50 > 400 µg/mL). Extracts of L. rotundifolia and S. marginatum exhibited moderate activities, with EC50 values ranging from 10-30 µg/mL. The A. gorgonum ethanolic extract showed activity toward early ring stages, and parasites treated with the T. senegalensis infusions progressed to the early trophozoite stage, although did not develop further to the late trophozoite or schizont stages. Antimalarial activities and the lack of cytotoxicity of the extracts are reported in the present study and support previous claims by traditional practitioners for the use of these plants against malaria while suggesting their ethnopharmacological usefulness as future antimalarials.

4.
Curr Med Chem ; 26(23): 4355-4379, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29521204

RESUMO

Only ~1% of all drug candidates against Neglected Tropical Diseases (NTDs) have reached clinical trials in the last decades, underscoring the need for new, safe and effective treatments. In such context, drug repositioning, which allows finding novel indications for approved drugs whose pharmacokinetic and safety profiles are already known, emerging as a promising strategy for tackling NTDs. Chemogenomics is a direct descendent of the typical drug discovery process that involves the systematic screening of chemical compounds against drug targets in high-throughput screening (HTS) efforts, for the identification of lead compounds. However, different to the one-drug-one-target paradigm, chemogenomics attempts to identify all potential ligands for all possible targets and diseases. In this review, we summarize current methodological development efforts in drug repositioning that use state-of-the-art computational ligand- and structure-based chemogenomics approaches. Furthermore, we highlighted the recent progress in computational drug repositioning for some NTDs, based on curation and modeling of genomic, biological, and chemical data. Additionally, we also present in-house and other successful examples and suggest possible solutions to existing pitfalls.


Assuntos
Antiprotozoários/uso terapêutico , Simulação por Computador , Doenças Negligenciadas/tratamento farmacológico , Antiprotozoários/química , Reposicionamento de Medicamentos , Humanos , Ligantes , Simulação de Acoplamento Molecular , Estrutura Molecular
5.
PLoS Negl Trop Dis ; 11(6): e0005510, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28640884

RESUMO

Lagochilascariasis is a parasitic disease caused by a helminth of the order Ascaroidea, genus Lagochilascaris that comprises 6 species, among which only Lagochilascaris minor Leiper, 1909, is implicated in the human form of the disease. It is remarkable that the majority of cases of human lagochilascariasis in the Americas have been reported in Brazil. The natural definitive hosts of this parasite seem to be wild felines and canines. Lagochilascariasis is mostly a chronic human disease that can persist for several years, in which the parasite burrows into the subcutaneous tissues of the neck, paranasal sinuses, and mastoid. L. minor exhibits remarkable ability to migrate through the tissues of its hosts, destroying even bone tissue. Fatal cases have been described in which the parasite was found in the lungs or central nervous system. Treatment is often palliative, with recurrence of lesions. This paper summarizes the main features of the disease and its etiologic agent, including prevalence, life cycle, clinical course, and treatment.


Assuntos
Infecções por Ascaridida/parasitologia , Ascaridoidea/classificação , Doenças Raras/parasitologia , Animais , Infecções por Ascaridida/patologia , Humanos , Doenças Raras/patologia
6.
Expert Opin Drug Discov ; 11(6): 557-67, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27073973

RESUMO

INTRODUCTION: The almost exclusive use of only praziquantel for the treatment of schistosomiasis has raised concerns about the possible emergence of drug-resistant schistosomes. Consequently, there is an urgent need for new antischistosomal drugs. The identification of leads and the generation of high quality data are crucial steps in the early stages of schistosome drug discovery projects. AREAS COVERED: Herein, the authors focus on the current developments in antischistosomal lead discovery, specifically referring to the use of automated in vitro target-based and whole-organism screens and virtual screening of chemical databases. They highlight the strengths and pitfalls of each of the above-mentioned approaches, and suggest possible roadmaps towards the integration of several strategies, which may contribute for optimizing research outputs and led to more successful and cost-effective drug discovery endeavors. EXPERT OPINION: Increasing partnerships and access to funding for drug discovery have strengthened the battle against schistosomiasis in recent years. However, the authors believe this battle also includes innovative strategies to overcome scientific challenges. In this context, significant advances of in vitro screening as well as computer-aided drug discovery have contributed to increase the success rate and reduce the costs of drug discovery campaigns. Although some of these approaches were already used in current antischistosomal lead discovery pipelines, the integration of these strategies in a solid workflow should allow the production of new treatments for schistosomiasis in the near future.


Assuntos
Desenho de Fármacos , Esquistossomose/tratamento farmacológico , Esquistossomicidas/uso terapêutico , Animais , Desenho Assistido por Computador , Bases de Dados de Compostos Químicos , Descoberta de Drogas/métodos , Resistência a Medicamentos , Humanos , Esquistossomose/parasitologia , Esquistossomicidas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA