Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neuroeng Rehabil ; 21(1): 110, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926876

RESUMO

INTRODUCTION: People with Parkinson's Disease (PD) show abnormal gait patterns compromising their independence and quality of life. Among all gait alterations due to PD, reduced step length, increased cadence, and decreased ground-reaction force during the loading response and push-off phases are the most common. Wearable biofeedback technologies offer the possibility to provide correlated single or multi-modal stimuli associated with specific gait events or gait performance, hence promoting subjects' awareness of their gait disturbances. Moreover, the portability and applicability in clinical and home settings for gait rehabilitation increase the efficiency in the management of PD. The Wearable Vibrotactile Bidirectional Interface (BI) is a biofeedback device designed to extract gait features in real-time and deliver a customized vibrotactile stimulus at the waist of PD subjects synchronously with specific gait phases. The aims of this study were to measure the effect of the BI on gait parameters usually compromised by the typical bradykinetic gait and to assess its usability and safety in clinical practice. METHODS: In this case series, seven subjects (age: 70.4 ± 8.1 years; H&Y: 2.7 ± 0.3) used the BI and performed a test on a 10-meter walkway (10mWT) and a two-minute walk test (2MWT) as pre-training (Pre-trn) and post-training (Post-trn) assessments. Gait tests were executed in random order with (Bf) and without (No-Bf) the activation of the biofeedback stimulus. All subjects performed three training sessions of 40 min to familiarize themselves with the BI during walking activities. A descriptive analysis of gait parameters (i.e., gait speed, step length, cadence, walking distance, double-support phase) was carried out. The 2-sided Wilcoxon sign-test was used to assess differences between Bf and No-Bf assessments (p < 0.05). RESULTS: After training subjects improved gait speed (Pre-trn_No-Bf: 0.72(0.59,0.72) m/sec; Post-trn_Bf: 0.95(0.69,0.98) m/sec; p = 0.043) and step length (Pre-trn_No-Bf: 0.87(0.81,0.96) meters; Post-trn_Bf: 1.05(0.96,1.14) meters; p = 0.023) using the biofeedback during the 10mWT. Similarly, subjects' walking distance improved (Pre-trn_No-Bf: 97.5 (80.3,110.8) meters; Post-trn_Bf: 118.5(99.3,129.3) meters; p = 0.028) and the duration of the double-support phase decreased (Pre-trn_No-Bf: 29.7(26.8,31.7) %; Post-trn_Bf: 27.2(24.6,28.7) %; p = 0.018) during the 2MWT. An immediate effect of the BI was detected in cadence (Pre-trn_No-Bf: 108(103.8,116.7) step/min; Pre-trn_Bf: 101.4(96.3,111.4) step/min; p = 0.028) at Pre-trn, and in walking distance at Post-trn (Post-trn_No-Bf: 112.5(97.5,124.5) meters; Post-trn_Bf: 118.5(99.3,129.3) meters; p = 0.043). SUS scores were 77.5 in five subjects and 80.3 in two subjects. In terms of safety, all subjects completed the protocol without any adverse events. CONCLUSION: The BI seems to be usable and safe for PD users. Temporal gait parameters have been measured during clinical walking tests providing detailed outcomes. A short period of training with the BI suggests improvements in the gait patterns of people with PD. This research serves as preliminary support for future integration of the BI as an instrument for clinical assessment and rehabilitation in people with PD, both in hospital and remote environments. TRIAL REGISTRATION: The study protocol was registered (DGDMF.VI/P/I.5.i.m.2/2019/1297) and approved by the General Directorate of Medical Devices and Pharmaceutical Service of the Italian Ministry of Health and by the ethics committee of the Lombardy region (Milan, Italy).


Assuntos
Biorretroalimentação Psicológica , Transtornos Neurológicos da Marcha , Doença de Parkinson , Dispositivos Eletrônicos Vestíveis , Humanos , Doença de Parkinson/reabilitação , Doença de Parkinson/complicações , Doença de Parkinson/fisiopatologia , Idoso , Masculino , Biorretroalimentação Psicológica/instrumentação , Biorretroalimentação Psicológica/métodos , Feminino , Transtornos Neurológicos da Marcha/reabilitação , Transtornos Neurológicos da Marcha/etiologia , Transtornos Neurológicos da Marcha/fisiopatologia , Pessoa de Meia-Idade , Marcha/fisiologia
2.
J Neuroeng Rehabil ; 20(1): 61, 2023 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-37149621

RESUMO

BACKGROUND: The aging of the population and the progressive increase of life expectancy in developed countries is leading to a high incidence of age-related cerebrovascular diseases, which affect people's motor and cognitive capabilities and might result in the loss of arm and hand functions. Such conditions have a detrimental impact on people's quality of life. Assistive robots have been developed to help people with motor or cognitive disabilities to perform activities of daily living (ADLs) independently. Most of the robotic systems for assisting on ADLs proposed in the state of the art are mainly external manipulators and exoskeletal devices. The main objective of this study is to compare the performance of an hybrid EEG/EOG interface to perform ADLs when the user is controlling an exoskeleton rather than using an external manipulator. METHODS: Ten impaired participants (5 males and 5 females, mean age 52 ± 16 years) were instructed to use both systems to perform a drinking task and a pouring task comprising multiple subtasks. For each device, two modes of operation were studied: synchronous mode (the user received a visual cue indicating the sub-tasks to be performed at each time) and asynchronous mode (the user started and finished each of the sub-tasks independently). Fluent control was assumed when the time for successful initializations ranged below 3 s and a reliable control in case it remained below 5 s. NASA-TLX questionnaire was used to evaluate the task workload. For the trials involving the use of the exoskeleton, a custom Likert-Scale questionnaire was used to evaluate the user's experience in terms of perceived comfort, safety, and reliability. RESULTS: All participants were able to control both systems fluently and reliably. However, results suggest better performances of the exoskeleton over the external manipulator (75% successful initializations remain below 3 s in case of the exoskeleton and bellow 5s in case of the external manipulator). CONCLUSIONS: Although the results of our study in terms of fluency and reliability of EEG control suggest better performances of the exoskeleton over the external manipulator, such results cannot be considered conclusive, due to the heterogeneity of the population under test and the relatively limited number of participants.


Assuntos
Atividades Cotidianas , Exoesqueleto Energizado , Masculino , Feminino , Humanos , Adulto , Pessoa de Meia-Idade , Idoso , Qualidade de Vida , Reprodutibilidade dos Testes , Encéfalo
3.
Sensors (Basel) ; 23(9)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37177725

RESUMO

Recent years have witnessed relevant advancements in the quality of life of persons with lower limb amputations thanks to the technological developments in prosthetics. However, prostheses that provide information about the foot-ground interaction, and in particular about terrain irregularities, are still missing on the market. The lack of tactile feedback from the foot sole might lead subjects to step on uneven terrains, causing an increase in the risk of falling. To address this issue, a biomimetic vibrotactile feedback system that conveys information about gait and terrain features sensed by a dedicated insole has been assessed with intact subjects. After having shortly experienced both even and uneven terrains, the recruited subjects discriminated them with an accuracy of 87.5%, solely relying on the replay of the vibrotactile feedback. With the objective of exploring the human decoding mechanism of the feedback startegy, a KNN classifier was trained to recognize the uneven terrains. The outcome suggested that the subjects achieved such performance with a temporal dynamics of 45 ms. This work is a leap forward to assist lower-limb amputees to appreciate the floor conditions while walking, adapt their gait and promote a more confident use of their artificial limb.


Assuntos
Amputados , Membros Artificiais , Humanos , Retroalimentação , Tecnologia Háptica , Qualidade de Vida , Extremidade Inferior , , Caminhada , Marcha , Fenômenos Biomecânicos
4.
Sensors (Basel) ; 22(5)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35270877

RESUMO

Timely and reliable identification of control phases is functional to the control of a powered robotic lower-limb prosthesis. This study presents a commercial energy-store-and-release foot prosthesis instrumented with a multimodal sensory system comprising optoelectronic pressure sensors (PS) and IMU. The performance was verified with eight healthy participants, comparing signals processed by two different algorithms, based on PS and IMU, respectively, for real-time detection of heel strike (HS) and toe-off (TO) events and an estimate of relevant biomechanical variables such as vertical ground reaction force (vGRF) and center of pressure along the sagittal axis (CoPy). The performance of both algorithms was benchmarked against a force platform and a marker-based stereophotogrammetric motion capture system. HS and TO were estimated with a time error lower than 0.100 s for both the algorithms, sufficient for the control of a lower-limb robotic prosthesis. Finally, the CoPy computed from the PS showed a Pearson correlation coefficient of 0.97 (0.02) with the same variable computed through the force platform.


Assuntos
Procedimentos Cirúrgicos Robóticos , Fenômenos Biomecânicos , , Marcha , Humanos , Transdutores de Pressão
5.
J Neuroeng Rehabil ; 18(1): 111, 2021 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-34217307

RESUMO

BACKGROUND: Transfemoral amputation is a serious intervention that alters the locomotion pattern, leading to secondary disorders and reduced quality of life. The outcomes of current gait rehabilitation for TFAs seem to be highly dependent on factors such as the duration and intensity of the treatment and the age or etiology of the patient. Although the use of robotic assistance for prosthetic gait rehabilitation has been limited, robotic technologies have demonstrated positive rehabilitative effects for other mobility disorders and may thus offer a promising solution for the restoration of healthy gait in TFAs. This study therefore explored the feasibility of using a bilateral powered hip orthosis (APO) to train the gait of community-ambulating TFAs and the effects on their walking abilities. METHODS: Seven participants (46-71 years old with different mobility levels) were included in the study and assigned to one of two groups (namely Symmetry and Speed groups) according to their prosthesis type, mobility level, and prior experience with the exoskeleton. Each participant engaged in a maximum of 12 sessions, divided into one Enrollment session, one Tuning session, two Assessment sessions (conducted before and after the training program), and eight Training sessions, each consisting of 20 minutes of robotically assisted overground walking combined with additional tasks. The two groups were assisted by different torque-phase profiles, aiming at improving symmetry for the Symmetry group and at maximizing the net power transferred by the APO for the Speed group. During the Assessment sessions, participants performed two 6-min walking tests (6mWTs), one with (Exo) and one without (NoExo) the exoskeleton, at either maximal (Symmetry group) or self-selected (Speed group) speed. Spatio-temporal gait parameters were recorded by commercial measurement equipment as well as by the APO sensors, and metabolic efficiency was estimated via the Cost of Transport (CoT). Additionally, kinetic and kinematic data were recorded before and after treatment in the NoExo condition. RESULTS: The one-month training protocol was found to be a feasible strategy to train TFAs, as all participants smoothly completed the clinical protocol with no relevant mechanical failures of the APO. The walking performance of participants improved after the training. During the 6mWT in NoExo, participants in the Symmetry and Speed groups respectively walked 17.4% and 11.7% farther and increased walking speed by 13.7% and 17.9%, with improved temporal and spatial symmetry for the former group and decreased energetic expenditure for the latter. Gait analysis showed that ankle power, step width, and hip kinematics were modified towards healthy reference levels in both groups. In the Exo condition metabolic efficiency was reduced by 3% for the Symmetry group and more than 20% for the Speed group. CONCLUSIONS: This study presents the first pilot study to apply a wearable robotic orthosis (APO) to assist TFAs in an overground gait rehabilitation program. The proposed APO-assisted training program was demonstrated as a feasible strategy to train TFAs in a rehabilitation setting. Subjects improved their walking abilities, although further studies are required to evaluate the effectiveness of the APO compared to other gait interventions. Future protocols will include a lighter version of the APO along with optimized assistive strategies.


Assuntos
Amputados , Robótica , Idoso , Marcha , Humanos , Pessoa de Meia-Idade , Aparelhos Ortopédicos , Projetos Piloto , Qualidade de Vida , Caminhada
6.
J Neuroeng Rehabil ; 18(1): 168, 2021 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-34863213

RESUMO

BACKGROUND: Transfemoral amputees experience a complex host of physical, psychological, and social challenges, compounded by the functional limitations of current transfemoral prostheses. However, the specific relationships between human factors and prosthesis design and performance characteristics have not yet been adequately investigated. The present study aims to address this knowledge gap. METHODS: A comprehensive single-cohort survey of 114 unilateral transfemoral amputees addressed a broad range of demographic and clinical characteristics, functional autonomy, satisfaction and attitudes towards their current prostheses, and design priorities for an ideal transfemoral prosthesis, including the possibility of active assistance from a robotic knee unit. The survey was custom-developed based on several standard questionnaires used to assess motor abilities and autonomy in activities of daily living, prosthesis satisfaction, and quality of life in lower-limb amputees. Survey data were analyzed to compare the experience (including autonomy and satisfaction) and design priorities of users of transfemoral prostheses with versus without microprocessor-controlled knee units (MPKs and NMPKs, respectively), with a subsequent analyses of cross-category correlation, principal component analysis (PCA), cost-sensitivity segmentation, and unsupervised K-means clustering applied within the most cost-sensitive participants, to identify functional groupings of users with respect to their design priorities. RESULTS: The cohort featured predominantly younger (< 50 years) traumatic male amputees with respect to the general transfemoral amputee population, with pronounced differences in age distribution and amputation etiology (traumatic vs. non-traumatic) between MPK and NMPK groups. These differences were further reflected in user experience, with MPK users reporting significantly greater overall functional autonomy, satisfaction, and sense of prosthesis ownership than those with NMPKs, in conjunction with a decreased incidence of instability and falls. Across all participants, the leading functional priorities for an ideal transfemoral prosthesis were overall stability, adaptability to variable walking velocity, and lifestyle-related functionality, while the highest-prioritized general characteristics were reliability, comfort, and weight, with highly variable prioritization of cost according to reimbursement status. PCA and user clustering analyses revealed the possibility for functionally relevant groupings of prosthesis features and users, based on their differential prioritization of these features-with implications towards prosthesis design tradeoffs. CONCLUSIONS: This study's findings support the understanding that when appropriately prescribed according to patient characteristics and needs in the context of a proactive rehabilitation program, advanced transfemoral prostheses promote patient mobility, autonomy, and overall health. Survey data indicate overall stability, modularity, and versatility as key design priorities for the continued development of transfemoral prosthesis technology. Finally, observed associations between prosthesis type, user experience, and attitudes concerning prosthesis ownership suggest both that prosthesis characteristics influence device acceptance and functional outcomes, and that psychosocial factors should be specifically and proactively addressed during the rehabilitation process.


Assuntos
Amputados , Membros Artificiais , Procedimentos Cirúrgicos Robóticos , Atividades Cotidianas , Amputação Cirúrgica , Amputados/reabilitação , Humanos , Masculino , Desenho de Prótese , Qualidade de Vida , Reprodutibilidade dos Testes , Inquéritos e Questionários , Design Centrado no Usuário , Caminhada
7.
Sensors (Basel) ; 21(10)2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-34063355

RESUMO

Wearable devices are used in rehabilitation to provide biofeedback about biomechanical or physiological body parameters to improve outcomes in people with neurological diseases. This is a promising approach that influences motor learning and patients' engagement. Nevertheless, it is not yet clear what the most commonly used sensor configurations are, and it is also not clear which biofeedback components are used for which pathology. To explore these aspects and estimate the effectiveness of wearable device biofeedback rehabilitation on balance and gait, we conducted a systematic review by electronic search on MEDLINE, PubMed, Web of Science, PEDro, and the Cochrane CENTRAL from inception to January 2020. Nineteen randomized controlled trials were included (Parkinson's n = 6; stroke n = 13; mild cognitive impairment n = 1). Wearable devices mostly provided real-time biofeedback during exercise, using biomechanical sensors and a positive reinforcement feedback strategy through auditory or visual modes. Some notable points that could be improved were identified in the included studies; these were helpful in providing practical design rules to maximize the prospective of wearable device biofeedback rehabilitation. Due to the current quality of the literature, it was not possible to achieve firm conclusions about the effectiveness of wearable device biofeedback rehabilitation. However, wearable device biofeedback rehabilitation seems to provide positive effects on dynamic balance and gait for PwND, but higher-quality RCTs with larger sample sizes are needed for stronger conclusions.


Assuntos
Marcha , Dispositivos Eletrônicos Vestíveis , Biorretroalimentação Psicológica , Exercício Físico , Humanos , Equilíbrio Postural , Estudos Prospectivos
8.
Sensors (Basel) ; 20(5)2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32155828

RESUMO

Wearable robotic devices require sensors and algorithms that can recognize the user state in real-time, in order to provide synergistic action with the body. For devices intended for locomotion-related applications, shoe-embedded sensors are a common and convenient choice, potentially advantageous for performing gait assessment in real-world environments. In this work, we present the development of a pair of pressure-sensitive insoles based on optoelectronic sensors for the real-time estimation of temporal gait parameters. The new design makes use of a simplified sensor configuration that preserves the time accuracy of gait event detection relative to previous prototypes. The system has been assessed relatively to a commercial force plate recording the vertical component of the ground reaction force (vGRF) and the coordinate of the center of pressure along the so-called progression or antero-posterior plane (CoPAP) in ten healthy participants during ground-level walking at two speeds. The insoles showed overall median absolute errors (MAE) of 0.06 (0.02) s and 0.04 (0.02) s for heel-strike and toe-off recognition, respectively. Moreover, they enabled reasonably accurate estimations of the stance phase duration (2.02 (2.03) % error) and CoPAP profiles (Pearson correlation coefficient with force platform ρCoP = 0.96 (0.02)), whereas the correlation with vGRF measured by the force plate was lower than that obtained with the previous prototype (ρvGRF = 0.47 (0.20)). These results confirm the suitability of the insoles for online sensing purposes such as timely gait phase estimation and discrete event recognition.


Assuntos
Sistemas Computacionais , Pé/fisiologia , Marcha/fisiologia , Pressão , Algoritmos , Fenômenos Biomecânicos , Eletricidade , Humanos
9.
J Neuroeng Rehabil ; 16(1): 45, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30922326

RESUMO

BACKGROUND: To assist people with disabilities, exoskeletons must be provided with human-robot interfaces and smart algorithms capable to identify the user's movement intentions. Surface electromyographic (sEMG) signals could be suitable for this purpose, but their applicability in shared control schemes for real-time operation of assistive devices in daily-life activities is limited due to high inter-subject variability, which requires custom calibrations and training. Here, we developed a machine-learning-based algorithm for detecting the user's motion intention based on electromyographic signals, and discussed its applicability for controlling an upper-limb exoskeleton for people with severe arm disabilities. METHODS: Ten healthy participants, sitting in front of a screen while wearing the exoskeleton, were asked to perform several reaching movements toward three LEDs, presented in a random order. EMG signals from seven upper-limb muscles were recorded. Data were analyzed offline and used to develop an algorithm that identifies the onset of the movement across two different events: moving from a resting position toward the LED (Go-forward), and going back to resting position (Go-backward). A set of subject-independent time-domain EMG features was selected according to information theory and their probability distributions corresponding to rest and movement phases were modeled by means of a two-component Gaussian Mixture Model (GMM). The detection of movement onset by two types of detectors was tested: the first type based on features extracted from single muscles, whereas the second from multiple muscles. Their performances in terms of sensitivity, specificity and latency were assessed for the two events with a leave one-subject out test method. RESULTS: The onset of movement was detected with a maximum sensitivity of 89.3% for Go-forward and 60.9% for Go-backward events. Best performances in terms of specificity were 96.2 and 94.3% respectively. For both events the algorithm was able to detect the onset before the actual movement, while computational load was compatible with real-time applications. CONCLUSIONS: The detection performances and the low computational load make the proposed algorithm promising for the control of upper-limb exoskeletons in real-time applications. Fast initial calibration makes it also suitable for helping people with severe arm disabilities in performing assisted functional tasks.


Assuntos
Eletromiografia/métodos , Exoesqueleto Energizado , Aprendizado de Máquina , Movimento/fisiologia , Adulto , Feminino , Humanos , Masculino , Extremidade Superior/fisiologia
10.
Sensors (Basel) ; 19(4)2019 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-30823508

RESUMO

The number of exoskeletons providing load-lifting assistance has significantly increased over the last decade. In this field, to take full advantage of active exoskeletons and provide appropriate assistance to users, it is essential to develop control systems that are able to reliably recognize and classify the users' movement when performing various lifting tasks. To this end, the movement-decoding algorithm should work robustly with different users and recognize different lifting techniques. Currently, there are no studies presenting methods to classify different lifting techniques in real time for applications with lumbar exoskeletons. We designed a real-time two-step algorithm for a portable hip exoskeleton that can detect the onset of the lifting movement and classify the technique used to accomplish the lift, using only the exoskeleton-embedded sensors. To evaluate the performance of the proposed algorithm, 15 healthy male subjects participated in two experimental sessions in which they were asked to perform lifting tasks using four different techniques (namely, squat lifting, stoop lifting, left-asymmetric lifting, and right-asymmetric lifting) while wearing an active hip exoskeleton. Five classes (the four lifting techniques plus the class "no lift") were defined for the classification model, which is based on a set of rules (first step) and a pattern recognition algorithm (second step). Leave-one-subject-out cross-validation showed a recognition accuracy of 99.34 ± 0.85%, and the onset of the lift movement was detected within the first 121 to 166 ms of movement.


Assuntos
Exoesqueleto Energizado , Fenômenos Biomecânicos , Padronização Corporal/fisiologia , Eletromiografia , Humanos , Procedimentos Cirúrgicos Robóticos
11.
Sensors (Basel) ; 19(22)2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31726745

RESUMO

When combined with assistive robotic devices, such as wearable robotics, brain/neural-computer interfaces (BNCI) have the potential to restore the capabilities of handicapped people to carry out activities of daily living. To improve applicability of such systems, workload and stress should be reduced to a minimal level. Here, we investigated the user's physiological reactions during the exhaustive use of the interfaces of a hybrid control interface. Eleven BNCI-naive healthy volunteers participated in the experiments. All participants sat in a comfortable chair in front of a desk and wore a whole-arm exoskeleton as well as wearable devices for monitoring physiological, electroencephalographic (EEG) and electrooculographic (EoG) signals. The experimental protocol consisted of three phases: (i) Set-up, calibration and BNCI training; (ii) Familiarization phase; and (iii) Experimental phase during which each subject had to perform EEG and EoG tasks. After completing each task, the NASA-TLX questionnaire and self-assessment manikin (SAM) were completed by the user. We found significant differences (p-value < 0.05) in heart rate variability (HRV) and skin conductance level (SCL) between participants during the use of the two different biosignal modalities (EEG, EoG) of the BNCI. This indicates that EEG control is associated with a higher level of stress (associated with a decrease in HRV) and mental work load (associated with a higher level of SCL) when compared to EoG control. In addition, HRV and SCL modulations correlated with the subject's workload perception and emotional responses assessed through NASA-TLX questionnaires and SAM.

12.
J Neuroeng Rehabil ; 14(1): 62, 2017 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-28651596

RESUMO

BACKGROUND: Only very recently, studies have shown that it is possible to reduce the metabolic rate of unloaded and loaded walking using robotic ankle exoskeletons. Some studies obtained this result by means of high positive work assistance while others combined negative and positive work assistance. There is no consensus about the isolated contribution of negative work assistance. Therefore, the aim of the present study is to examine the effect of varying negative work assistance at the ankle joint while maintaining a fixed level of positive work assistance with a multi-articular soft exosuit. METHODS: We tested eight participants during walking at 1.5 ms-1 with a 23-kg backpack. Participants wore a version of the exosuit that assisted plantarflexion via Bowden cables tethered to an off-board actuation platform. In four active conditions we provided different rates of exosuit bilateral ankle negative work assistance ranging from 0.015 to 0.037 W kg-1 and a fixed rate of positive work assistance of 0.19 W kg-1. RESULTS: All active conditions significantly reduced metabolic rate by 11 to 15% compared to a reference condition, where the participants wore the exosuit but no assistance was provided. We found no significant effect of negative work assistance. However, there was a trend (p = .08) toward greater reduction in metabolic rate with increasing negative work assistance, which could be explained by observed reductions in biological ankle and hip joint power and moment. CONCLUSIONS: The non-significant trend of increasing negative work assistance with increasing reductions in metabolic rate motivates the value in further studies on the relative effects of negative and positive work assistance. There may be benefit in varying negative work over a greater range or in isolation from positive work assistance.


Assuntos
Articulação do Tornozelo , Exoesqueleto Energizado , Caminhada , Adulto , Algoritmos , Fenômenos Biomecânicos , Metabolismo Energético , Desenho de Equipamento , Voluntários Saudáveis , Articulação do Quadril , Humanos , Masculino , Movimento , Consumo de Oxigênio , Robótica , Adulto Jovem
13.
J Neuroeng Rehabil ; 12: 77, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26341285

RESUMO

BACKGROUND: Lower-limb amputation causes the individual a huge functional impairment due to the lack of adequate sensory perception from the missing limb. The development of an augmenting sensory feedback device able to restore some of the missing information from the amputated limb may improve embodiment, control and acceptability of the prosthesis. FINDINGS: In this work we transferred the Rubber Hand Illusion paradigm to the lower limb. We investigated the possibility of promoting body ownership of a fake foot, in a series of experiments fashioned after the RHI using matched or mismatched (vibrotactile) stimulation. The results, collected from 19 healthy subjects, demonstrated that it is possible to elicit the perception of possessing a rubber foot when modality-matched stimulations are provided synchronously on the biological foot and to the corresponding rubber foot areas. Results also proved that it is possible to enhance the illusion even with modality-mismatched stimulation, even though illusion was lower than in case of modality-matched stimulation. CONCLUSIONS: We demonstrated the possibility of promoting a Rubber Foot Illusion with both matched and mismatched stimulation.


Assuntos
Amputação Cirúrgica/psicologia , , Ilusões/psicologia , Adulto , Amputados/psicologia , Membros Artificiais , Biorretroalimentação Psicológica , Imagem Corporal , Feminino , Voluntários Saudáveis , Humanos , Ilusões/etiologia , Extremidade Inferior/lesões , Extremidade Inferior/cirurgia , Masculino , Estimulação Física , Autoimagem
14.
Sensors (Basel) ; 14(1): 1073-93, 2014 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-24412902

RESUMO

This paper introduces the design and development of a novel pressure-sensitive foot insole for real-time monitoring of plantar pressure distribution during walking. The device consists of a flexible insole with 64 pressure-sensitive elements and an integrated electronic board for high-frequency data acquisition, pre-filtering, and wireless transmission to a remote data computing/storing unit. The pressure-sensitive technology is based on an optoelectronic technology developed at Scuola Superiore Sant'Anna. The insole is a low-cost and low-power battery-powered device. The design and development of the device is presented along with its experimental characterization and validation with healthy subjects performing a task of walking at different speeds, and benchmarked against an instrumented force platform.


Assuntos
Técnicas Biossensoriais , Marcha/fisiologia , Caminhada/fisiologia , Fenômenos Biomecânicos , Humanos , Pressão , Software
15.
Appl Ergon ; 117: 104226, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38219374

RESUMO

Upper-limb occupational exoskeletons to support the workers' upper arms are typically designed to provide antigravitational support. Although typical work activities require workers to perform static and dynamic actions, the majority of the studies in literature investigated the effects of upper-limb occupational exoskeletons in static and quasi-static activities, while only a few works focused on dynamic tasks. This article presents a systematic evaluation of the effects of different levels of antigravitational support (from about 60% to 100% of the arm gravitational load) provided by a passive upper-limb occupational exoskeleton on muscles' activity during repetitive arm movements. The effect of the exoskeleton on muscle activity was evaluated by the comparison of muscle activations with and without the exoskeleton. The average muscle activation was computed considering shoulder full flexion-extension cycles, and sub-movements, namely the arm-lifting (i.e., flexion) and arm-lowering (i.e., extension) movements. Results showed a quasi-linear correlation between antigravitational support and muscle activity reductions, both when considering the full flexion-extension cycle and in the arm-lifting movement (reductions were up to 64 and 61% compared to not wearing the exoskeleton, respectively). When considering the arm-lowering movement, providing antigravitational support close to or higher than 100% of the arm gravitational load led to increased muscle activations of the extensors (up to 127%), suggesting that such an amount of antigravitational support may be not effective for a complete biomechanical load reduction on the shoulder district in dynamic tasks.


Assuntos
Braço , Exoesqueleto Energizado , Humanos , Braço/fisiologia , Extremidade Superior/fisiologia , Movimento/fisiologia , Músculos , Fenômenos Biomecânicos , Eletromiografia/métodos
16.
Artigo em Inglês | MEDLINE | ID: mdl-38526883

RESUMO

Individuals with Parkinson's disease (PD) are characterized by gait and balance disorders limiting their independence and quality of life. Home-based rehabilitation programs, combined with drug therapy, demonstrated to be beneficial in the daily-life activities of PD subjects. Sensorized shoes can extract balance- and gait-related data in home-based scenarios and allow clinicians to monitor subjects' activities. In this study, we verified the capability of a pair of sensorized shoes (including pressure-sensitive insoles and one inertial measurement unit) in assessing ground-level walking and body weight shift exercises. The shoes can potentially be combined with a sensory biofeedback module that provides vibrotactile cues to individuals. Sensorized shoes have been assessed in terms of the capability of detecting relevant gait events (heel strike, flat foot, toe off), estimating spatiotemporal parameters of gait (stance, swing, and double support duration, stride length), estimating gait variables (vertical ground-reaction force, vGRF; coordinate of the center of pressure along the longitudinal axes of the feet, yCoP; and the dorsiflexion angle of the feet, Pitch angle). The assessment compared the outcomes with those extracted from the gold standard equipment, namely force platforms and a motion capture system. Results of this comparison with 9 PD subjects showed an overall median absolute error lower than 0.03 s in detecting the foot-contact, foot-off, and heel-off gait events while performing ground-level walking and lower than 0.15 s in body weight shift exercises. The computation of spatiotemporal parameters of gait showed median errors of 1.62 % of the stance phase duration and 0.002 m of the step length. Regarding the estimation of vGRF, yCoP, and Pitch angle, the median across-subjects Pearson correlation coefficient was 0.90, 0.94, and 0.91, respectively. These results confirm the suitability of the sensorized shoes for quantifying biomechanical features during body weight shift and gait exercises of PD and pave the way to exploit the biofeedback modules of the bidirectional interface in future studies.


Assuntos
Doença de Parkinson , Humanos , Sapatos , Qualidade de Vida , Marcha , Caminhada , Peso Corporal , Fenômenos Biomecânicos
17.
Artigo em Inglês | MEDLINE | ID: mdl-38507380

RESUMO

Reducing energy consumption during walking is a critical goal for transtibial amputees. The study presents the evaluation of a semi-active prosthesis with five transtibial amputees. The prosthesis has a low-power actuator integrated in parallel into an energy-storing-and-releasing foot. The actuator is controlled to compress the foot during the stance phase, supplementing the natural compression due to the user's dynamic interaction with the ground, particularly during the ankle dorsiflexion phase, and to release the energy stored in the foot during the push-off phase, to enhance propulsion. The control strategy is adaptive to the user's gait patterns and speed. The clinical protocol to evaluate the system included treadmill and overground walking tasks. The results showed that walking with the semi-active prosthesis reduced the Physiological Cost Index of transtibial amputees by up to 16% compared to walking using the subjects' proprietary prosthesis. No significant alterations were observed in the spatiotemporal gait parameters of the participants, indicating the module's compatibility with users' natural walking patterns. These findings highlight the potential of the mechatronic actuator in effectively reducing energy expenditure during walking for transtibial amputees. The proposed prosthesis may bring a positive impact on the quality of life, mobility, and functional performance of individuals with transtibial amputation.


Assuntos
Amputados , Membros Artificiais , Humanos , Articulação do Tornozelo/fisiologia , Fenômenos Biomecânicos , Marcha/fisiologia , Desenho de Prótese , Qualidade de Vida , Caminhada/fisiologia
18.
Sensors (Basel) ; 13(1): 1021-45, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23322104

RESUMO

We present a sensor technology for the measure of the physical human-robot interaction pressure developed in the last years at Scuola Superiore Sant'Anna. The system is composed of flexible matrices of opto-electronic sensors covered by a soft silicone cover. This sensory system is completely modular and scalable, allowing one to cover areas of any sizes and shapes, and to measure different pressure ranges. In this work we present the main application areas for this technology. A first generation of the system was used to monitor human-robot interaction in upper- (NEUROExos; Scuola Superiore Sant'Anna) and lower-limb (LOPES; University of Twente) exoskeletons for rehabilitation. A second generation, with increased resolution and wireless connection, was used to develop a pressure-sensitive foot insole and an improved human-robot interaction measurement systems. The experimental characterization of the latter system along with its validation on three healthy subjects is presented here for the first time. A perspective on future uses and development of the technology is finally drafted.


Assuntos
Sistemas Homem-Máquina , Pressão , Robótica/instrumentação , Robótica/métodos , Membros Artificiais , Fenômenos Biomecânicos/fisiologia , Cotovelo/fisiologia , Marcha/fisiologia , Quadril/fisiologia , Humanos , Maleabilidade
19.
Artigo em Inglês | MEDLINE | ID: mdl-38064320

RESUMO

NESM- γ is an upper-limb exoskeleton to train motor functions of post-stroke patients. Based on the kinesiology of the upper limb, the NESM- γ includes a four degrees-of-freedom (DOF) active kinematic chain for the shoulder and elbow, along with a passive chain for self-aligning robotic joint axes with the glenohumeral (GH) joint's center of rotation. The passive chain accounts for scapulohumeral rhythm and trunk rotations. To assess self-aligning performance, we analyzed the kinematic and electromyographic data of the shoulder in eight healthy subjects performing reaching tasks under three experimental conditions: moving without the exoskeleton (baseline), moving while wearing the exoskeleton with the passive DOFs properly functioning, i.e., unlocked (human-in-the-loop(HIL)-unlocked), and with the passive DOFs locked (HIL-locked). Comparison of baseline and HIL-unlocked conditions showed nearly unchanged anatomical movement patterns, with a root-mean-square error of shoulder angle lower than 5 deg and median deviations of the GH center of rotation below 20 mm. Peak muscle activations showed no significant differences. In contrast, the HIL-locked condition deviated significantly from the baseline, as observed by the trunk and GH trajectory deviations up to 50 mm, accompanied by increased peak muscle activations in the Deltoid and Upper Trapezius muscles. These findings highlight the need for kinematic solutions in shoulder exoskeletons that can accommodate the movements of the entire shoulder complex and trunk to achieve kinematic compatibility.


Assuntos
Exoesqueleto Energizado , Ombro , Humanos , Ombro/fisiologia , Fenômenos Biomecânicos , Extremidade Superior/fisiologia , Cotovelo
20.
Appl Ergon ; 106: 103877, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36095895

RESUMO

In the past few years, companies have started considering the adoption of upper-limb occupational exoskeletons as a solution to reduce the health and cost issues associated with work-related shoulder overuse injuries. Most of the previous research studies have evaluated the efficacy of these devices in laboratories by measuring the reduction in muscle exertion resulting from device use in stereotyped tasks and controlled conditions. However, to date, uncertainties exist about generalizing laboratory results to more realistic conditions of use. The current study aims to investigate the in-field efficacy (through electromyography and perceived exertion), usability, and acceptance of a commercial spring-loaded upper-limb exoskeleton in cleaning job activities. The operators were required to maintain prolonged overhead postures while holding and moving a pole equipped with tools for window and ceiling cleaning. Compared to the normal working condition, the exoskeleton significantly reduced the total shoulder muscle activity (∼17%), the activity of the anterior deltoid (∼26%), medial deltoid (∼28%), and upper trapezius (∼24%). With the exoskeleton, the operators perceived reduced global effort (∼17%) as well as a reduced local effort in the shoulder (∼18%), arm (∼22%), upper back (∼14%), and lower back (∼16%). The beneficial effect of the exoskeleton and its suitability in cleaning settings are corroborated by the acceptance and usability scores assigned by operators, which averaged ∼5.5 out of 7 points. To the authors' knowledge, this study is the first to present an experience of exoskeleton use in cleaning contexts. The outcomes of this research invite further studies to test occupational exoskeletons in various realistic applications to foster scientific-grounded ergonomic evaluations and encourage the informed adoption of the technology.


Assuntos
Exoesqueleto Energizado , Músculos Superficiais do Dorso , Humanos , Eletromiografia , Extremidade Superior/fisiologia , Ombro/fisiologia , Músculo Esquelético/fisiologia , Fenômenos Biomecânicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA