Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Appl Clin Med Phys ; 22(1): 251-260, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33342042

RESUMO

Treating multiple lung lesions synchronously via single-isocenter volumetric modulated arc therapy (VMAT) stereotactic body radiation therapy (SBRT) improves treatment efficiency and patient compliance. However, aligning multiple lung tumors accurately on single pretreatment cone beam CTs (CBCTs) can be problematic. Tumors misaligned could lead to target coverage loss. To quantify this potential target coverage loss due to small, clinically realistic setup errors, a novel simulation method was developed. This method was used on 26 previously treated patients with two metastatic lung lesions. Patients were treated with 4D CT-based, highly conformal noncoplanar VMAT plans (clinical VMAT) with 6MV-flattening filter free (FFF) beam using AcurosXB dose calculation algorithm with heterogeneity corrections. A single isocenter was placed approximately between the lesions to improve patient convenience and clinic workflow. Average isocenter to tumor distance was 5.9 cm. Prescription dose was 54 Gy/50 Gy in 3/5 fractions. For comparison, a plan summation (simulated VMAT) was executed utilizing randomly simulated, clinically relevant setup errors, obtained from pretreatment setup, per treatment fraction, in Eclipse treatment planning system for each of the six degrees of freedom within ± 5.0 mm and ± 2°. Simulations yielded average deviations of 27.4% (up to 72% loss) (P < 0.001) from planned target coverage when treating multiple lung lesions using a single-isocenter plan. The largest deviations from planned coverage and desired biological effective dose (BED10, with α/ß = 10 Gy) were seen for the smallest targets (<10 cc), some of which received < 100 Gy BED10. Patient misalignment resulted in substantial decrease in conformity and increase in the gradient index, violating major characteristics of SBRT. Statistically insignificant differences were seen for normal tissue dose. Although, clinical follow-up of these patients is ongoing, the authors recommend an alternative treatment planning strategy to minimize the probability of a geometric miss when treating small lung lesions synchronously with single-isocenter VMAT SBRT plans.


Assuntos
Radiocirurgia , Radioterapia de Intensidade Modulada , Humanos , Pulmão , Órgãos em Risco , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
2.
J Appl Clin Med Phys ; 22(1): 261-270, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33342070

RESUMO

Stereotactic body radiotherapy (SBRT) of lung tumors via the ring-mounted Halcyon Linac, a fast kilovoltage cone beam CT-guided treatment with coplanar geometry, a single energy 6MV flattening filter free (FFF) beam and volumetric modulated arc therapy (VMAT) is a fast, safe, and feasible treatment modality for selected lung cancer patients. Four-dimensional (4D) CT-based treatment plans were generated using advanced AcurosXB algorithm with heterogeneity corrections using an SBRT board and Halcyon couch insert. Halcyon VMAT-SBRT plans with stacked and staggered multileaf collimators produced highly conformal radiosurgical dose distribution to the target, lower intermediate dose spillage, and similar dose to adjacent organs at risks (OARs) compared to SBRT-dedicated highly conformal clinical noncoplanar Truebeam VMAT plans following the RTOG-0813 requirements. Due to low monitor units per fraction and less multileaf collimator (MLC) modulation, the Halcyon VMAT plan can deliver lung SBRT fractions with an overall treatment time of less than 15 min (for 50 Gy in five fractions), significantly improving patient comfort and clinic workflow. Higher pass rates of quality assurance results demonstrate a more accurate treatment delivery on Halcyon. We have implemented Halcyon for lung SBRT treatment in our clinic. We suggest others use Halcyon for lung SBRT treatments using abdominal compression or 4D CT-based treatment planning, thus expanding the access of curative ultra-hypofractionated treatments to other centers with only a Halcyon Linac. Clinical follow-up results for patients treated on Halcyon Linac with lung SBRT is ongoing.


Assuntos
Neoplasias Pulmonares , Radiocirurgia , Radioterapia de Intensidade Modulada , Humanos , Pulmão , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/cirurgia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA