Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Risk Anal ; 43(11): 2241-2261, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36690591

RESUMO

Climate change influences the frequency of extreme events that affect both human and natural systems. It requires systemic climate change adaptation to address the complexity of risks across multiple domains and tackle the uncertainties of future scenarios. This paper introduces a multirisk analysis of climate hazard, exposure, vulnerability, and risk severity, specifically designed to hotspot geographic locations and prioritize system receptors that are affected by climate-related extremes. The analysis is demonstrated for the Metropolitan City of Venice. Representative scenarios (RCP4.5 and RCP8.5) of climate threats (i.e., storm surges, pluvial flood, heat waves, and drought) are selected and represented by projections of Regional Climate Models for a 30-year period (2021-2050). A sample of results is as follows. First, an increase in the risk is largely due to drought, pluvial flood, and storm surge, depending on the areas of interest, with the overall situation worsening under the RCP8.5 scenario. Second, particular locations have colocated vulnerable receptors at higher risk, concentrated in the urban centers (e.g., housing, railways, roads) and along the coast (e.g., beaches, wetlands, primary sector). Third, risk communication of potential environmental and socio-economic losses via the multirisk maps is useful to stakeholders and public administration. Fourth, the multirisk maps recommend priorities for future investigation and risk management, such as collection of sensor data, elaboration of mitigations, and adaptation plans at hotspot locations.

2.
Risk Anal ; 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066704

RESUMO

Increases in the magnitudes and frequencies of climate-related extreme events are redistributing risk across coastal systems, including their environmental, economic, and social components. Consequently, stakeholders (SHs) are faced with long-term challenges and complex information when managing assets, services, and uses of the coast. In this context, SH engagement is a key step for risk management and in the preparation of resilience plans to respond and adapt to climate change. This paper develops a participatory method to identify and prioritize a set of risk measures, combining multi-criteria analysis with sensitivity analysis. The process involved local and regional authorities of the Veneto region testing the method, including national, regional, and local government, catchment officers, research organizations, natural parks managers and Non-Governmental Organizations (NGOs). SHs identified and ranked a range of adaptation measures to increase climate resilience, with a focus on coastal risk in the Venice lagoon. Results demonstrate that the sensitivity analysis provides useful information on how different sectors of expertise can influence the ranking of the identified risk management measures, highlighting the value of investigating the preferences or priorities of different SH groups within the definition of adaptation plans.

3.
Risk Anal ; 42(5): 931-952, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34533220

RESUMO

Increases in the magnitude and frequency of climate and other disruptive factors are placing environmental, economic, and social stresses on coastal systems. This is further exacerbated by land use transformations, urbanization, over-tourism, sociopolitical tensions, technological innovations, among others. A scenario-informed multicriteria decision analysis (MCDA) was applied in the Metropolitan City of Venice integrating qualitative (i.e., local stakeholder preferences) and quantitative information (i.e., climate-change projections) with the aim of enhancing system resilience to multiple climate-related threats. As part of this analysis, different groups of local stakeholders (e.g., local authorities, civil protection agencies, SMEs, NGOs) were asked to identify critical functions that needs to be sustained. Various policy initiatives were considered to support these critical functions. The MCDA was used to rank the initiatives across several scenarios describing main climate threats (e.g., storm surges, floods, heatwaves, drought). We found that many climate change scenarios were considered to be disruptive to stakeholders and influence alternative ranking. The management alternatives acting on physical domain generally enhance resilience across just a few scenarios while cognitive and informative initiatives provided resilience enhancement across most scenarios considered. With uncertainty of multiple stressors along with projected climate variability, a portfolio of cognitive and physical initiatives is recommended to enhance resilience.


Assuntos
Desastres , Cidades , Mudança Climática , Inundações , Incerteza
4.
Environ Sci Technol ; 55(10): 6783-6790, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33945265

RESUMO

River delta-front estuaries (DEs) are vital interfaces for fluxes between terrestrial and marine environments. However, deep uncertainty exists in estimating the sedimentary pollutant flux from terrestrial environments in DEs due, in part, to a lack of direct measurements in these dynamic and complicated regions and uncertainty in the calculation method. Due to its high sediment content, the Yellow River (YR) has a strong ability to adsorb phosphorus; therefore, it reliably reflects estuarine sedimentary processes. Here, through the comprehensive analysis of field samples, monitoring data and remote sensing images, we conclude that riverine fine particles control the deltaic estuary pollution status and that particle size is the key factor. Based on the stable relationships between phosphorus and heavy metals, with r2 values of 0.990, 0.992, and 0.639 for As, Cd, and Cr, respectively, we estimated that the P flux reached 22.68 g/m2 yr in 2017. Analysis of the YR high-silt sediment load, which has a strong phosphorus adsorption ability and constitutes a substantial fraction of global fluvial sediment transport, revealed a negative correlation between the riverine sediment load and the estuarine phosphorus flux.


Assuntos
Rios , Poluentes Químicos da Água , China , Monitoramento Ambiental , Estuários , Sedimentos Geológicos , Fósforo/análise , Poluentes Químicos da Água/análise
5.
J Environ Manage ; 232: 759-771, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30529418

RESUMO

Climate change has already led to a wide range of impacts on our society, the economy and the environment. According to future scenarios, mountain regions are highly vulnerable to climate impacts, including changes in the water cycle (e.g. rainfall extremes, melting of glaciers, river runoff), loss of biodiversity and ecosystems services, damages to local economy (drinking water supply, hydropower generation, agricultural suitability) and human safety (risks of natural hazards). This is due to their exposure to recent climate warming (e.g. temperature regime changes, thawing of permafrost) and the high degree of specialization of both natural and human systems (e.g. mountain species, valley population density, tourism-based economy). These characteristics call for the application of risk assessment methodologies able to describe the complex interactions among multiple hazards, biophysical and socio-economic systems, towards climate change adaptation. Current approaches used to assess climate change risks often address individual risks separately and do not fulfil a comprehensive representation of cumulative effects associated to different hazards (i.e. compound events). Moreover, pioneering multi-layer single risk assessment (i.e. overlapping of single-risk assessments addressing different hazards) is still widely used, causing misleading evaluations of multi-risk processes. This raises key questions about the distinctive features of multi-risk assessments and the available tools and methods to address them. Here we present a review of five cutting-edge modelling approaches (Bayesian networks, agent-based models, system dynamic models, event and fault trees, and hybrid models), exploring their potential applications for multi-risk assessment and climate change adaptation in mountain regions. The comparative analysis sheds light on advantages and limitations of each approach, providing a roadmap for methodological and technical implementation of multi-risk assessment according to distinguished criteria (e.g. spatial and temporal dynamics, uncertainty management, cross-sectoral assessment, adaptation measures integration, data required and level of complexity). The results show limited applications of the selected methodologies in addressing the climate and risks challenge in mountain environments. In particular, system dynamic and hybrid models demonstrate higher potential for further applications to represent climate change effects on multi-risk processes for an effective implementation of climate adaptation strategies.


Assuntos
Mudança Climática , Ecossistema , Aclimatação , Teorema de Bayes , Humanos , Medição de Risco
6.
J Environ Manage ; 217: 144-156, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29602075

RESUMO

In the EU brownfield presence is still considered a widespread problem. Even though, in the last decades, many research projects and initiatives developed a wealth of methods, guidelines, tools and technologies aimed at supporting brownfield regeneration. However, this variety of products had and still has a limited practical impact on brownfield revitalisation success, because they are not used in their entire potential due to their scarce visibility. Also, another problem that stakeholders face is finding customised information. To overcome this non-visibility and not-sufficient customisation of information, the Information System for Brownfield Regeneration (ISBR) has been developed, based on Artificial Neural Networks, which allows understanding stakeholders' information needs by providing tailored information. The ISBR has been tested by stakeholders from the EU project TIMBRE case studies, located in the Czech Republic, Germany, Poland and Romania. Data gained during tests allowed to understand stakeholders' information needs. Overall, stakeholders showed to be concerned first on remediation aspects, then on benchmarking information, which are valuable to improve practices in the complex field of brownfield regeneration, and then on the relatively new issue of sustainability applied to brownfield regeneration and remediation. Mature markets confirmed their interest for remediation-related aspects, highlighting the central role that risk assessment plays in the process. Emerging markets showed to seek information and tools for strategic and planning issues, like brownfield inventories and georeferenced data sets. Results led to conclude that a new improved platform, combining the ISBR functionalities with geo-referenced ones, would be useful and could represent a further research application.


Assuntos
Recuperação e Remediação Ambiental , Redes Neurais de Computação , República Tcheca , Alemanha , Sistemas de Informação , Polônia , Romênia
7.
J Environ Manage ; 202(Pt 1): 320-331, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28750284

RESUMO

The evaluation and management of climate change impacts on natural and human systems required the adoption of a multi-risk perspective in which the effect of multiple stressors, processes and interconnections are simultaneously modelled. Despite Bayesian Networks (BNs) are popular integrated modelling tools to deal with uncertain and complex domains, their application in the context of climate change still represent a limited explored field. The paper, drawing on the review of existing applications in the field of environmental management, discusses the potential and limitation of applying BNs to improve current climate change risk assessment procedures. Main potentials include the advantage to consider multiple stressors and endpoints in the same framework, their flexibility in dealing and communicate with the uncertainty of climate projections and the opportunity to perform scenario analysis. Some limitations (i.e. representation of temporal and spatial dynamics, quantitative validation), however, should be overcome to boost BNs use in climate change impacts assessment and management.


Assuntos
Mudança Climática , Medição de Risco , Teorema de Bayes , Clima , Humanos , Incerteza
8.
J Environ Manage ; 168: 123-32, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26704454

RESUMO

This paper presents a review of existing multi-risk assessment concepts and tools applied by organisations and projects providing the basis for the development of a multi-risk methodology in a climate change perspective. Relevant initiatives were developed for the assessment of multiple natural hazards (e.g. floods, storm surges, droughts) affecting the same area in a defined timeframe (e.g. year, season, decade). Major research efforts were focused on the identification and aggregation of multiple hazard types (e.g. independent, correlated, cascading hazards) by means of quantitative and semi-quantitative approaches. Moreover, several methodologies aim to assess the vulnerability of multiple targets to specific natural hazards by means of vulnerability functions and indicators at the regional and local scale. The overall results of the review show that multi-risk approaches do not consider the effects of climate change and mostly rely on the analysis of static vulnerability (i.e. no time-dependent vulnerabilities, no changes among exposed elements). A relevant challenge is therefore to develop comprehensive formal approaches for the assessment of different climate-induced hazards and risks, including dynamic exposure and vulnerability. This requires the selection and aggregation of suitable hazard and vulnerability metrics to make a synthesis of information about multiple climate impacts, the spatial analysis and ranking of risks, including their visualization and communication to end-users. To face these issues, climate impact assessors should develop cross-sectorial collaborations among different expertise (e.g. modellers, natural scientists, economists) integrating information on climate change scenarios with sectorial climate impact assessment, towards the development of a comprehensive multi-risk assessment process.


Assuntos
Mudança Climática , Processos Climáticos , Desastres , Medição de Risco/métodos , Ecossistema , Humanos , Estados Unidos
9.
J Environ Manage ; 184(Pt 1): 94-107, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27452774

RESUMO

Prioritizing brownfields for redevelopment in real estate portfolios can contribute to more sustainable regeneration and land management. Owners of large real estate and brownfield portfolios are challenged to allocate their limited resources to the development of the most critical or promising sites, in terms of time and cost efficiency. Authorities worried about the negative impacts of brownfields - in particular in the case of potential contamination - on the environment and society also need to prioritize their resources to those brownfields that most urgently deserve attention and intervention. Yet, numerous factors have to be considered for prioritizing actions, in particular when adhering to sustainability principles. Several multiple-criteria decision analysis (MCDA) approaches and tools have been suggested in order to support these actors in managing their brownfield portfolios. Based on lessons learned from the literature on success factors, sustainability assessment and MCDA approaches, researchers from a recent EU project have developed the web-based Timbre Brownfield Prioritization Tool (TBPT). It facilitates assessment and prioritization of a portfolio of sites on the basis of the probability of successful and sustainable regeneration or according to individually specified objectives. This paper introduces the challenges of brownfield portfolio management in general and reports about the application of the TBPT in five cases: practical test-uses by two large institutional land owners from Germany, a local and a regional administrative body from the Czech Republic, and an expert from a national environmental authority from Romania. Based on literature requirements for sustainability assessment tools and on the end-users' feedbacks from the practical tests, we discuss the TBPT's strengths and weaknesses in order to inform and give recommendations for future development of prioritization tools.


Assuntos
Conservação dos Recursos Naturais/métodos , Recuperação e Remediação Ambiental/métodos , República Tcheca , Técnicas de Apoio para a Decisão , Poluição Ambiental , Alemanha , Humanos , Romênia
10.
J Environ Manage ; 166: 178-92, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26496848

RESUMO

In the last decade, the regeneration of derelict or underused sites, fully or partly located in urban areas (or so called "brownfields"), has become more common, since free developable land (or so called "greenfields") has more and more become a scare and, hence, more expensive resource, especially in densely populated areas. Although the regeneration of brownfield sites can offer development potentials, the complexity of these sites requires considerable efforts to successfully complete their revitalization projects and the proper selection of promising sites is a pre-requisite to efficiently allocate the limited financial resources. The identification and analysis of success factors for brownfield sites regeneration can support investors and decision makers in selecting those sites which are the most advantageous for successful regeneration. The objective of this paper is to present the Timbre Brownfield Prioritization Tool (TBPT), developed as a web-based solution to assist stakeholders responsible for wider territories or clusters of brownfield sites (portfolios) to identify which brownfield sites should be preferably considered for redevelopment or further investigation. The prioritization approach is based on a set of success factors properly identified through a systematic stakeholder engagement procedure. Within the TBPT these success factors are integrated by means of a Multi Criteria Decision Analysis (MCDA) methodology, which includes stakeholders' requalification objectives and perspectives related to the brownfield regeneration process and takes into account the three pillars of sustainability (economic, social and environmental dimensions). The tool has been applied to the South Moravia case study (Czech Republic), considering two different requalification objectives identified by local stakeholders, namely the selection of suitable locations for the development of a shopping centre and a solar power plant, respectively. The application of the TBPT to the case study showed that it is flexible and easy to adapt to different local contexts, allowing the assessors to introduce locally relevant parameters identified according to their expertise and considering the availability of local data.


Assuntos
Tomada de Decisões , Técnicas de Apoio para a Decisão , Recuperação e Remediação Ambiental/economia , Recuperação e Remediação Ambiental/métodos , Formulação de Políticas , República Tcheca , Internet
11.
J Environ Manage ; 184(Pt 1): 4-17, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27520125

RESUMO

Since mid-to-late 2000s growing interest for sustainable remediation has emerged in initiatives from several international and national organisations as well as other initiatives from networks and forums. This reflects a realisation that risk-management activities can about bring environmental, social, and economic impacts (positive or negative) in addition to achieving risk-based remediation goals. These ideas have begun to develop as a new discipline of "sustainable remediation". The various initiatives have now published a number of frameworks, standards, white papers, road maps and operative guidelines. The similarities and differences in the approaches by these outputs and general trends have been identified. The comparison is based on a set of criteria developed in discussion with members of these various initiatives, and identifies a range of similarities between their publications. Overall the comparison demonstrates a high level of consensus across definitions and principles, which leads to the conclusion that there is a shared understanding of what sustainable remediation is both across countries and stakeholder groups. Publications do differ in points of detail, in particular about the operational aspects of sustainable remediation assessment. These differences likely result from differences in context and legal framework. As this analysis was carried out its findings were debated with members of the various international initiatives, many of whom have been included as authors. Hence the outcomes described in this paper can be seen as the result of a sort of multi-level debate among international experts (authors) and so can offer a starting point to new sustainable remediation initiatives (for example in other countries) that aim to start developing their own documents.


Assuntos
Recuperação e Remediação Ambiental/métodos , Conservação dos Recursos Naturais/métodos , Europa (Continente) , Humanos , Cooperação Internacional , Gestão de Riscos/métodos , Estados Unidos
12.
Sci Total Environ ; 914: 169925, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38199377

RESUMO

Pluvial flood is a natural hazard occurring from extreme rainfall events that affect millions of people around the world, causing damages to their properties and lives. The magnitude of projected climate risks indicates the urgency of putting in place actions to increase climate resilience. Through this study, we develop a Machine Learning (ML) model to predict pluvial flood risk under Representative Concentration Pathways (RCP) 4.5 and 8.5 for future scenarios of precipitation for the period 2021-2050, considering different triggering factors and precipitation patterns. The analysis is focused on the case study area of the Metropolitan City of Venice (MCV) and considers 212 historical pluvial flood events occurred in the timeframe 1995-2020. The methodology developed implements spatio-temporal constraints in the ML model to improve pluvial flood risk prediction under future scenarios of climate change. Accordingly, a cross-validation approach was applied to frame a model able to predict pluvial flood at any time and space. This was complemented with historical pluvial flood data and the selection of nine triggering factors representative of territorial features that contribute to pluvial flood events. Logistic Regression was the most reliable model, with the highest AUC score, providing robust result both in the validation and test set. Maximum cumulative rainfall of 14 days was the most important feature contributing to pluvial flood occurrence. The final output is represented by a suite of risk maps of the flood-prone areas in the MCV for each quarter of the year for the period 1995-2020 based on historical data, and risk maps for each quarter of the period 2021-2050 under RCP4.5 and 8.5 of future precipitation scenarios. Overall, the results underline a consistent increase in extreme events (i.e., very high and extremely high risk of pluvial flooding) under the more catastrophic scenario RCP8.5 for future decades compared to the baseline.

13.
Integr Environ Assess Manag ; 20(2): 433-453, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38044542

RESUMO

The environmental management cycles for chemicals and climate change (EMC4 ) is a suggested conceptual framework for integrating climate change aspects into chemical risk management. The interaction of climate change and chemical risk brings together complex systems that are imperfectly understood by science. Making management decisions in this context is therefore difficult and often exacerbated by a lack of data. The consequences of poor decision-making can be significant for both environmental and human health. This article reflects on the ways in which existing chemicals management systems consider climate change and proposes the EMC4 conceptual framework, which is a tool for decision-makers operating at different spatial scales. Also presented are key questions raised by the tool to help the decision-maker identify chemical risks from climate change, management options, and, importantly, the different types of actors that are instrumental in managing that risk. Case studies showing decision-making at different spatial scales are also presented highlighting the conceptual framework's applicability to multiple scales. The United Nations Environment Programme's development of an intergovernmental Science Policy Panel on Chemicals and Waste has presented an opportunity to promote and generate research highlighting the impacts of chemicals and climate change interlinkages. Integr Environ Assess Manag 2024;20:433-453. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Humanos , Medição de Risco , Gestão de Riscos , Ecotoxicologia
14.
Sci Total Environ ; 904: 166310, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37586521

RESUMO

Under the influence of anthropogenic climate change, hazardous climate and weather events are increasing in frequency and severity, with wide-ranging impacts across ecosystems and landscapes, especially fragile and dynamic coastal zones. The presented multi-model chain approach combines ocean hydrodynamics, wave fields, and shoreline extraction models to build a Bayesian Network-based coastal risk assessment model for the future analysis of shoreline evolution and seawater quality (i.e., suspended particulate matter, diffuse attenuation of light). In particular, the model was designed around a baseline scenario exploiting historical shoreline and oceanographic data within the 2015-2017 timeframe. Shoreline erosion and water quality changes along the coastal area of the Metropolitan city of Venice were evaluated for 2021-2050, under the RCP8.5 future scenario. The results showed a destabilizing trend in both shoreline evolution and seawater quality under the selected climate change scenario. Specifically, after a stable period (2021-2030), the shoreline will be affected by periods of erosion (2031-2040) and then accretion (2041-2050), with a simultaneous decrease in seawater quality in terms of higher turbidity. The decadal analysis and sensitivity evaluation of the input variables demonstrates a strong influence of oceanographic variables on the assessed endpoints, highlighting how the factors are strongly connected. The integration of regional and global climate models with Machine Learning and satellite imagery within the proposed multi-model chain represents an innovative update on state-of-the-art techniques. The validated outputs represent a good promise for better understanding the varying impacts due to future climate change conditions (e.g., wind, wave, tide, and sea-level). Moreover, the flexibility of the approach allows for the quick integration of climate and multi-risk data as it becomes available, and would represent a useful tool for forward-looking coastal risk management for decision-makers.

15.
Sci Total Environ ; 861: 160687, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36473660

RESUMO

Cumulative impacts increasingly threaten marine and coastal ecosystems. To address this issue, the research community has invested efforts on designing and testing different methodological approaches and tools that apply cumulative impact appraisal schemes for a sound evaluation of the complex interactions and dynamics among multiple pressures affecting marine and coastal ecosystems. Through an iterative scientometric and systematic literature review, this paper provides the state of the art of cumulative impact assessment approaches and applications. It gives a specific attention to cutting-edge approaches that explore and model inter-relations among climatic and anthropogenic pressures, vulnerability and resilience of marine and coastal ecosystems to these pressures, and the resulting changes in ecosystem services flow. Despite recent advances in computer sciences and the rising availability of big data for environmental monitoring and management, this literature review evidenced that the implementation of advanced complex system methods for cumulative risk assessment remains limited. Moreover, experts have only recently started integrating ecosystem services flow into cumulative impact appraisal frameworks, but more as a general assessment endpoint within the overall evaluation process (e.g. changes in the bundle of ecosystem services against cumulative impacts). The review also highlights a lack of integrated approaches and complex tools able to frame, explain, and model spatio-temporal dynamics of marine and coastal ecosystems' response to multiple pressures, as required under relevant EU legislation (e.g., Water Framework and Marine Strategy Framework Directives). Progress in understanding cumulative impacts, exploiting the functionalities of more sophisticated machine learning-based approaches (e.g., big data integration), will support decision-makers in the achievement of environmental and sustainability objectives.


Assuntos
Efeitos Antropogênicos , Ecossistema , Monitoramento Ambiental/métodos , Medição de Risco , Água
16.
Integr Environ Assess Manag ; 18(6): 1564-1577, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35429140

RESUMO

According to the latest projections of the Intergovernmental Panel on Climate Change, at the end of the century, coastal zones and low-lying ecosystems will be increasingly threatened by rising global mean sea levels. In order to support integrated coastal zone management and advance the basic "source-pathway-receptor-consequence" approach focused on traditional receptors (e.g., population, infrastructure, and economy), a novel risk framework is proposed able to evaluate potential risks of loss or degradation of ecosystem services (ESs) due to projected extreme sea level scenarios in the Italian coast. Three risk scenarios for the reference period (1969-2010) and future time frame up to 2050 under RCP4.5 and RCP8.5 are developed by integrating extreme water-level projections related to changing climate conditions, with vulnerability information about the topography, distance from coastlines, and presence of artificial protections. A risk assessment is then performed considering the potential effects of the spatial-temporal variability of inundations and land use on the supply level and spatial distribution of ESs. The results of the analysis are summarized into a spatially explicit risk index, useful to rank coastal areas more prone to ESs losses or degradation due to coastal inundation at the national scale. Overall, the Northern Adriatic coast is scored at high risk of ESs loss or degradation in the future scenario. Other small coastal strips with medium risk scores are the Eastern Puglia coast, Western Sardinia, and Tuscany's coast. The ESs Coastal Risk Index provides an easy-to-understand screening assessment that could support the prioritization of areas for coastal adaptation at the national scale. Moreover, this index allows the direct evaluation of the public value of ecosystems and supports more effective territorial planning and environmental management decisions. In particular, it could support the mainstreaming of ecosystem-based approaches (e.g., ecological engineering and green infrastructures) to mitigate the risks of climate change and extreme events while protecting ecosystems and biodiversity. Integr Environ Assess Manag 2022;18:1564-1577. © 2021 SETAC.


Assuntos
Mudança Climática , Ecossistema , Elevação do Nível do Mar , Biodiversidade , Itália
17.
Integr Environ Assess Manag ; 16(5): 761-772, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32320132

RESUMO

We assess the relative vulnerability of the Mediterranean shoreline of Egypt (about 1000 km in length) to climate change (i.e., sea-level rise [SLR], storm surge flooding, and coastal erosion) by using a Climate-improved Coastal Vulnerability Index (CCVI). We integrate information relative to a multidimensional set of physical, geological, and socioeconomic variables, and add to the mainstream literature the consideration of both a reference and a climate change scenario, assuming the representative concentration pathway 8.5 W/m2 (RCP8.5) for the 21st century in the Mediterranean region. Results report that approximately 1% (~43 km²) of the mapped shoreline is classifiable as having a high or very high vulnerability, whereas approximately 80% (4652 km²) shows very low vulnerability. As expected, exposure to inundation and erosion is especially relevant in highly developed and urbanized coastal areas. Along the shoreline, while the Nile Delta region is the most prone area to coastal erosion and permanent or occasional inundations (both in the reference and in the climate scenario), results show the Western Desert area to be less vulnerable due to its geological characteristics (i.e., rocky and cliffed coasts, steeper coastal slope). The application of the CCVI to the coast of Egypt can be considered as a first screening of the hot-spot risk areas at the national scale. The results of the analysis, including vulnerability maps and indicators, can be used to support the development of climate adaptation and integrated coastal zone management strategies. Integr Environ Assess Manag 2020;16:761-772. © 2020 SETAC.


Assuntos
Mudança Climática , Elevação do Nível do Mar , Egito , Inundações
18.
Sci Total Environ ; 703: 134972, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-31759699

RESUMO

Oceans are changing faster than even observed before. Unprecedented climate variability is interacting with long-term trends, all against a backdrop of rising anthropogenic use of marine space. The growth of maritime activities is taking place without the full understanding of complex interactions between natural and human-induced changes, leading to a progressive decline of biodiversity and degradation of marine ecosystems. Against this complex interplay, marine managers and policy makers are increasingly calling for new approaches and tools allowing a multi-scenario assessment of environmental impacts arising from the complex interaction between natural and anthropogenic drivers, also in consideration of multiple marine plans objectives. Responding to this need, for the Adriatic Sea we developed a GIS-based Bayesian Network to evaluate the probability (and related uncertainty) of cumulative impacts under four 'what-if' scenarios representing different marine management options and climate conditions. We addressed issues concerning consequences of potential planning measures, as well as management programmes required to achieve environmental status targets, as required by relevant EU acquis. Results from the scenario analysis highlighted that an integrated approach to maritime spatial planning is required, combining more sustainable management options of marine spaces and resources with climate adaptation strategies. This approach to planning would allow to reduce human pressures on the marine environment and rise resilience of natural ecosystems to climate and human-induced disturbances, which would result in an overall decrease of cumulative impacts.

19.
Sci Total Environ ; 648: 1665-1672, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30172483

RESUMO

Ecotoxicological data are highly important for risk assessment processes and are used for deriving environmental quality criteria, which are enacted for assuring the good quality of waters, soils or sediments and achieving desirable environmental quality objectives. Therefore, it is of significant importance the evaluation of the reliability and relevance of available data for analysing their possible use in the aforementioned processes. In this context, a new methodology which has been developed based on Multi-Criteria Decision Analysis (MCDA) techniques, is being used, demonstrated and tested for analysing the reliability and relevance of ecotoxicological data of cyanide (which are produced through laboratory biotests for individual effects). The proposed methodology is also used for the production of Weighted by Data Quality Species Sensitivity Distributions (SSD-WDQ), as a component of the Ecological Risk Assessment of chemicals in aquatic systems. The SSD-WDQ production resulted in the estimation of environmental quality criteria (hazard concentration affecting 5% and 50% of the species). The proposed work is part of the development of the AMORE Decision Support System (DSS) for the application of probabilistic Ecological Risk Assessment (ERA), presented in the companion paper (Isigonis et al., 2019). The DSS has been tested through a case study on ERA of cyanide in the watershed of river Selune in France. The paper presents the 'Effect Assessment' of cyanide, based on the aforementioned methodologies. The main results presented in the paper are the probabilistic analysis of the estimated species sensitivity on cyanide (Effect Assessment) and the calculation of Hazardous Concentration (HCx) of the same contaminant in the Selune river area, based on the functionalities of the DSS. The results are described and discussed in detail, with the use of various graphs and indices. The indices are calculated for all the available ecotoxicological data, as well as for the data on trophic levels or taxonomic groups separately. An effect comparison is presented between the innovative methodologies included in the DSS and the currently existing methodologies.

20.
Sci Total Environ ; 652: 1347-1365, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30586820

RESUMO

Freshwater ecosystem services are negatively affected by factors such as climate change (e.g. changes in temperature, precipitation, and sea level rise) and human interventions (e.g. agriculture practices, impoundment of dams, and land use/land cover change). Moreover, the potential synergic impacts of these factors on ecosystems are unevenly distributed, depending on geographical, climatic and socio-economic conditions. The paper aims to review the complex effects of climatic and non-climatic drivers on the supply and demand of freshwater ecosystem services. Based on the literature, we proposed a conceptual framework and a set of indicators for assessing the above-mentioned impacts due to global change, i.e. climate change and human activities. Then, we checked their applicability to the provisioning services of two well-known case studies, namely the Po River basin (Italy) and the Red River basin (Vietnam). To define the framework and the indicators, we selected the most relevant papers and reports; identified the major drivers and the most relevant services; and finally summarized the fundamental effects of these drivers on those services. We concluded that the proposed framework was applicable to the analyzed case studies, but it was not straightforward to consider all the indicators since ecosystem services were not explicitly considered as key assessment endpoints in these areas. Additionally, the supply of ecosystem services was found to draw much more attention than their demand. Finally, we highlighted the importance of defining a common and consistent terminology and classification of drivers, services, and effects to reduce mismatches among ecosystem services when conducting a risk assessment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA