Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Microbiol ; 25(5): 948-961, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36598494

RESUMO

The ammonia monooxygenase (AMO) is a key enzyme in ammonia-oxidizing archaea, which are abundant and ubiquitous in soil environments. The AMO belongs to the copper-containing membrane monooxygenase (CuMMO) enzyme superfamily, which also contains particulate methane monooxygenase (pMMO). Enzymes in the CuMMO superfamily are promiscuous, which results in co-oxidation of alternative substrates. The phylogenetic and structural similarity between the pMMO and the archaeal AMO is well-established, but there is surprisingly little information on the influence of methane and methanol on the archaeal AMO and terrestrial nitrification. The aim of this study was to examine the effects of methane and methanol on the soil ammonia-oxidizing archaeon 'Candidatus Nitrosocosmicus franklandus C13'. We demonstrate that both methane and methanol are competitive inhibitors of the archaeal AMO. The inhibition constants (Ki ) for methane and methanol were 2.2 and 20 µM, respectively, concentrations which are environmentally relevant and orders of magnitude lower than those previously reported for ammonia-oxidizing bacteria. Furthermore, we demonstrate that a specific suite of proteins is upregulated and downregulated in 'Ca. Nitrosocosmicus franklandus C13' in the presence of methane or methanol, which provides a foundation for future studies into metabolism of one-carbon (C1) compounds in ammonia-oxidizing archaea.


Assuntos
Archaea , Metanol , Archaea/metabolismo , Metanol/metabolismo , Amônia/metabolismo , Metano/metabolismo , Filogenia , Oxirredução , Solo/química
2.
Environ Microbiol ; 25(4): 786-799, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36567445

RESUMO

Isoprene (2-methyl-1,3-butadiene) is emitted to the atmosphere each year in sufficient quantities to rival methane (>500 Tg C yr-1 ), primarily due to emission by trees and other plants. Chemical reactions of isoprene with other atmospheric compounds, such as hydroxyl radicals and inorganic nitrogen species (NOx ), have implications for global warming and local air quality, respectively. For many years, it has been estimated that soil-dwelling bacteria consume a significant amount of isoprene (~20 Tg C yr-1 ), but the mechanisms underlying the biological sink for isoprene have been poorly understood. Studies have indicated or confirmed the ability of diverse bacterial genera to degrade isoprene, whether by the canonical iso-type isoprene degradation pathway or through other less well-characterized mechanisms. Here, we review current knowledge of isoprene metabolism and highlight key areas for further research. In particular, examples of isoprene-degraders that do not utilize the isoprene monooxygenase have been identified in recent years. This has fascinating implications both for the mechanism of isoprene uptake by bacteria, and also for the ecology of isoprene-degraders in the environments.


Assuntos
Bactérias , Hemiterpenos , Hemiterpenos/química , Hemiterpenos/metabolismo , Bactérias/genética , Bactérias/metabolismo , Butadienos/química , Butadienos/metabolismo , Plantas/metabolismo , Pentanos/química , Pentanos/metabolismo
3.
Appl Environ Microbiol ; 89(3): e0212222, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36840579

RESUMO

Isoprene monooxygenase (IsoMO, encoded by isoABCDEF) initiates the oxidation of the climate-active gas isoprene, with the genes isoGHIJ and aldH nearly always found adjacent to isoABCDEF in extant and metagenome-derived isoprene degraders. The roles of isoGHIJ and aldH are uncertain, although each is essential to isoprene degradation. We report here the characterization of these proteins from two model isoprene degraders, Rhodococcus sp. strain AD45 and Variovorax sp. strain WS11. The genes isoHIJ and aldH from Variovorax and aldH from Rhodococcus were expressed individually in Escherichia coli as maltose binding protein fusions to overcome issues of insolubility. The activity of two glutathione S-transferases from Variovorax, IsoI and IsoJ was assessed with model substrates, and the conversion of epoxyisoprene to the intermediate 1-hydroxy-2-glutathionyl-2-methyl-3-butene (HGMB) was demonstrated. The next step of the isoprene metabolic pathway of Variovorax is catalyzed by the dehydrogenase IsoH, resulting in the conversion of HGMB to 2-glutathionyl-2-methyl-3-butenoic acid (GMBA). The aldehyde dehydrogenases (AldH) from Variovorax and Rhodococcus were examined with a variety of aldehydes, with both exhibiting maximum activity with butanal. AldH significantly increased the rate of production of NADH when added to the IsoH-catalyzed conversion of HGMB to GMBA (via GMB), suggesting a synergistic role for AldH in the isoprene metabolic pathway. An in silico analysis of IsoG revealed that this protein, which is essential for isoprene metabolism in Variovorax, is an enzyme of the formyl CoA-transferase family and is predicted to catalyze the formation of a GMBA-CoA thioester as an intermediate in the isoprene oxidation pathway. IMPORTANCE Isoprene is a climate-active gas, largely produced by trees, which is released from the biosphere in amounts equivalent to those of methane and all other volatile organic compounds combined. Bacteria found in many environments, including soils and on the surface of leaves of isoprene-producing trees, can grow on isoprene and thus may represent a significant biological sink for this globally significant volatile compound and remove isoprene before it escapes to the atmosphere, thus reducing its potency as a climate-active gas. The initial oxidation of isoprene by bacteria is mediated by isoprene monooxygenase encoded by the genes isoABCDEF. In isoprene-degrading bacteria, a second gene cluster, isoGHIJ, is also present, although the exact role in isoprene degradation by the proteins encoded by these genes is uncertain. This investigation sheds new light on the roles of these proteins in the isoprene oxidation pathway in two model isoprene-degrading bacteria of the genera Rhodococcus and Variovorax.


Assuntos
Hemiterpenos , Oxigenases de Função Mista , Oxigenases de Função Mista/metabolismo , Oxirredução , Hemiterpenos/metabolismo , Bactérias/metabolismo , Aldeído Desidrogenase/metabolismo , Redes e Vias Metabólicas/genética
4.
J Nat Prod ; 86(10): 2398-2406, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37737825

RESUMO

Cocultivation of the fungi Penicillium brasilianum MST-FP1927 and Aspergillus nomius MST-FP2004 resulted in the reciprocal induction of two new compounds, miktospiromide A (1) from A. nomius and kitrinomycin A (2) from P. brasilianum. A third new compound, kitrinomycin B (3), was also identified from an axenic culture of P. brasilianum, along with the previously reported compounds austalide K (4), 17S-dihydroaustalide K (5), verruculogen (6), and fumitremorgin B (7). The structures of 1-3 were elucidated by detailed spectroscopic analysis and DFT calculations, while 4-7 were identified by comparison to authentic standards. The genome of A. nomius MST-FP2004 was sequenced, and a putative biosynthetic gene cluster for 1 was identified. Compound 2 showed activity against murine melanoma NS-1 cells (LD99 7.8 µM) and the bovine parasite Tritrichomonas foetus (LD99 4.8 µM).


Assuntos
Aspergillus , Penicillium , Animais , Bovinos , Camundongos , Penicillium/química
5.
Environ Microbiol ; 24(2): 596-613, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34320271

RESUMO

The biological importance of lanthanides has only recently been identified, initially as the active site metal of the alternative methanol dehydrogenase (MDH) Xox-MDH. So far, the effect of lanthanide (Ln) has only been studied in relatively few organisms. This work investigated the effects of Ln on gene transcription and protein expression in the facultative methanotroph Methylocella silvestris BL2, a widely distributed methane-oxidizing bacterium with the unique ability to grow not just on methane but also on other typical components of natural gas, ethane and propane. Expression of calcium- or Ln-dependent MDH was controlled by Ln (the lanthanide switch) during growth on one-, two- or three-carbon substrates, and Ln imparted a considerable advantage during growth on propane, a novel result extending the importance of Ln to consumers of this component of natural gas. Two Xox-MDHs were expressed and regulated by Ln in M. silvestris, but interestingly Ln repressed rather than induced expression of the second Xox-MDH. Despite the metabolic versatility of M. silvestris, no other alcohol dehydrogenases were expressed, and in double-mutant strains lacking genes encoding both Ca- and Ln-dependent MDHs (mxaF and xoxF5 or xoxF1), growth on methanol and ethanol appeared to be enabled by expression of the soluble methane monooxygenase.


Assuntos
Oxirredutases do Álcool , Proteínas de Bactérias , Beijerinckiaceae , Lantânio , Oxirredutases do Álcool/genética , Proteínas de Bactérias/genética , Beijerinckiaceae/efeitos dos fármacos , Beijerinckiaceae/genética , Expressão Gênica , Lantânio/farmacologia , Metano/metabolismo , Metanol/metabolismo , Gás Natural/microbiologia
6.
Environ Microbiol ; 24(11): 5151-5164, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35920040

RESUMO

Bacteria that inhabit soils and the leaves of trees partially mitigate the release of the abundant volatile organic compound, isoprene (2-methyl-1,3-butadiene). While the initial steps of isoprene metabolism were identified in Rhodococcus sp. AD45 two decades ago, the isoprene metabolic pathway still remains largely undefined. Limited understanding of the functions of isoG, isoJ and aldH and uncertainty in the route of isoprene-derived carbon into central metabolism have hindered our understanding of isoprene metabolism. These previously uncharacterised iso genes are essential in Variovorax sp. WS11, determined by targeted mutagenesis. Using combined 'omics-based approaches, we propose the complete isoprene metabolic pathway. Isoprene is converted to propionyl-CoA, which is assimilated by the chromosomally encoded methylmalonyl-CoA pathway, requiring biotin and vitamin B12, with the plasmid-encoded methylcitrate pathway potentially providing robustness against limitations in these vitamins. Key components of this pathway were induced by both isoprene and its initial oxidation product, epoxyisoprene, the principal inducer of isoprene metabolism in both Variovorax sp. WS11 and Rhodococcus sp. AD45. Analysis of the genomes of distinct isoprene-degrading bacteria indicated that all of the genetic components of the methylcitrate and methylmalonyl-CoA pathways are not always present in isoprene degraders, although incorporation of isoprene-derived carbon via propionyl-CoA and acetyl-CoA is universally indicated.


Assuntos
Comamonadaceae , Rhodococcus , Hemiterpenos/metabolismo , Butadienos/metabolismo , Rhodococcus/genética , Rhodococcus/metabolismo , Comamonadaceae/genética , Comamonadaceae/metabolismo , Carbono/metabolismo
7.
Appl Environ Microbiol ; 88(8): e0247021, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35384704

RESUMO

Ammonia-oxidizing archaea (AOA) and bacteria (AOB) perform key steps in the global nitrogen cycle, the oxidation of ammonia to nitrite. While the ammonia oxidation pathway is well characterized in AOB, many knowledge gaps remain about the metabolism of AOA. Hydroxylamine is an intermediate in both AOB and AOA, but homologues of hydroxylamine dehydrogenase (HAO), catalyzing bacterial hydroxylamine oxidation, are absent in AOA. Hydrazine is a substrate for bacterial HAO, while phenylhydrazine is a suicide inhibitor of HAO. Here, we examine the effect of hydrazines in AOA to gain insights into the archaeal ammonia oxidation pathway. We show that hydrazine is both a substrate and an inhibitor for AOA and that phenylhydrazine irreversibly inhibits archaeal hydroxylamine oxidation. Both hydrazine and phenylhydrazine interfered with ammonia and hydroxylamine oxidation in AOA. Furthermore, the AOA "Candidatus Nitrosocosmicus franklandus" C13 oxidized hydrazine into dinitrogen (N2), coupling this reaction to ATP production and O2 uptake. This study expands the known substrates of AOA and suggests that despite differences in enzymology, the ammonia oxidation pathways of AOB and AOA are functionally surprisingly similar. These results demonstrate that hydrazines are valuable tools for studying the archaeal ammonia oxidation pathway. IMPORTANCE Ammonia-oxidizing archaea (AOA) are among the most numerous living organisms on Earth, and they play a pivotal role in the global biogeochemical nitrogen cycle. Despite this, little is known about the physiology and metabolism of AOA. We demonstrate in this study that hydrazines are inhibitors of AOA. Furthermore, we demonstrate that the model soil AOA "Ca. Nitrosocosmicus franklandus" C13 oxidizes hydrazine to dinitrogen gas, and this reaction yields ATP. This provides an important advance in our understanding of the metabolism of AOA and expands the short list of energy-yielding compounds that AOA can use. This study also provides evidence that hydrazines can be useful tools for studying the metabolism of AOA, as they have been for the bacterial ammonia oxidizers.


Assuntos
Amônia , Archaea , Trifosfato de Adenosina/metabolismo , Amônia/metabolismo , Archaea/metabolismo , Bactérias/metabolismo , Humanos , Hidrazinas/metabolismo , Hidrazinas/farmacologia , Hidroxilaminas/metabolismo , Nitrificação , Fenil-Hidrazinas/metabolismo , Microbiologia do Solo
8.
Appl Environ Microbiol ; 88(7): e0002922, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35285709

RESUMO

Isoprene (2-methyl-1,3-butadiene) is a climate-active gas released to the atmosphere in large quantities, comparable to methane in magnitude. Several bacteria have been isolated which can grow on isoprene as a sole carbon and energy source, but very little information is available about the degradation of isoprene by these bacteria at the biochemical level. Isoprene utilization is dependent on a multistep pathway, with the first step being the oxidation of isoprene to epoxy-isoprene. This is catalyzed by a four-component soluble diiron monooxygenase, isoprene monooxygenase (IsoMO). IsoMO is a six-protein complex comprising an oxygenase (IsoABE), containing the di-iron active site, a Rieske-type ferredoxin (IsoC), a NADH reductase (IsoF), and a coupling/effector protein (IsoD), homologous to the soluble methane monooxygenase and alkene/aromatic monooxygenases. Here, we describe the purification of the IsoMO components from Rhodococcus sp. AD45 and reconstitution of isoprene-oxidation activity in vitro. Some IsoMO components were expressed and purified from the homologous host Rhodococcus sp. AD45-ID, a Rhodococcus sp. AD45 strain lacking the megaplasmid which contains the isoprene metabolic gene cluster. Others were expressed in Escherichia coli and purified as fusion proteins. We describe the characterization of these purified components and demonstrate their activity when combined with Rhodococcus sp. AD45 cell lysate. Demonstration of IsoMO activity in vitro provides a platform for further biochemical and biophysical characterization of this novel soluble diiron center monooxygenase, facilitating new insights into the enzymatic basis for the bacterial degradation of isoprene. IMPORTANCE Isoprene is a highly abundant climate-active gas and a carbon source for some bacteria. Analyses of the genes encoding isoprene monooxygenase (IsoMO) indicate this enzyme is a soluble diiron center monooxygenase in the same family of oxygenases as soluble methane monooxygenase, alkene monooxygenase, and toluene monooxygenase. We report the initial biochemical characterization of IsoMO from Rhodococcus, the first from any bacterium, describing the challenging purification and reconstitution of in vitro activity of its four components. This study lays the foundation for future detailed mechanistic studies of IsoMO, a key enzyme in the global isoprene cycle.


Assuntos
Rhodococcus , Butadienos , Carbono/metabolismo , Hemiterpenos/metabolismo , Oxigenases de Função Mista/metabolismo , Oxigenases/metabolismo , Rhodococcus/metabolismo
9.
Mol Biol Evol ; 37(12): 3525-3549, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-32702104

RESUMO

Methylation is a common posttranslational modification of arginine and lysine in eukaryotic proteins. Methylproteomes are best characterized for higher eukaryotes, where they are functionally expanded and evolved complex regulation. However, this is not the case for protist species evolved from the earliest eukaryotic lineages. Here, we integrated bioinformatic, proteomic, and drug-screening data sets to comprehensively explore the methylproteome of Giardia duodenalis-a deeply branching parasitic protist. We demonstrate that Giardia and related diplomonads lack arginine-methyltransferases and have remodeled conserved RGG/RG motifs targeted by these enzymes. We also provide experimental evidence for methylarginine absence in proteomes of Giardia but readily detect methyllysine. We bioinformatically infer 11 lysine-methyltransferases in Giardia, including highly diverged Su(var)3-9, Enhancer-of-zeste and Trithorax proteins with reduced domain architectures, and novel annotations demonstrating conserved methyllysine regulation of eukaryotic elongation factor 1 alpha. Using mass spectrometry, we identify more than 200 methyllysine sites in Giardia, including in species-specific gene families involved in cytoskeletal regulation, enriched in coiled-coil features. Finally, we use known methylation inhibitors to show that methylation plays key roles in replication and cyst formation in this parasite. This study highlights reduced methylation enzymes, sites, and functions early in eukaryote evolution, including absent methylarginine networks in the Diplomonadida. These results challenge the view that arginine methylation is eukaryote conserved and demonstrate that functional compensation of methylarginine was possible preceding expansion and diversification of these key networks in higher eukaryotes.


Assuntos
Giardia/enzimologia , Proteínas Metiltransferases/metabolismo , Proteoma , Evolução Biológica , Proteínas do Citoesqueleto/metabolismo , Metilação , Trofozoítos/crescimento & desenvolvimento
10.
Environ Microbiol ; 23(11): 6520-6535, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34390603

RESUMO

The Zoige wetland of the Tibetan Plateau is one of the largest alpine wetlands in the world and a major emission source of methane. Methane oxidation by methanotrophs can counteract the global warming effect of methane released in the wetlands. Understanding methanotroph activity, diversity and metabolism at the molecular level can guide the isolation of the uncultured microorganisms and inform strategy-making decisions and policies to counteract global warming in this unique ecosystem. Here we applied DNA stable isotope probing using 13 C-labelled methane to label the genomes of active methanotrophs, examine the methane oxidation potential and recover metagenome-assembled genomes (MAGs) of active methanotrophs. We found that gammaproteobacteria of type I methanotrophs are responsible for methane oxidation in the wetland. We recovered two phylogenetically novel methanotroph MAGs distantly related to extant Methylobacter and Methylovulum. They belong to type I methanotrophs of gammaproteobacteria, contain both mxaF and xoxF types of methanol dehydrogenase coding genes, and participate in methane oxidation via H4 MPT and RuMP pathways. Overall, the community structure of active methanotrophs and their methanotrophic pathways revealed by DNA-SIP metagenomics and retrieved methanotroph MAGs highlight the importance of methanotrophs in suppressing methane emission in the wetland under the scenario of global warming.


Assuntos
Metagenômica , Áreas Alagadas , Ecossistema , Metano/metabolismo , Filogenia , Microbiologia do Solo , Tibet
11.
Org Biomol Chem ; 19(5): 1022-1036, 2021 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-33443509

RESUMO

In this study, we report the semisynthesis and in vitro biological evaluation of thirty-four derivatives of the fungal depsidone antibiotic, unguinol. Initially, the semisynthetic modifications were focused on the two free hydroxy groups (3-OH and 8-OH), the three free aromatic positions (C-2, C-4 and C-7), the butenyl side chain and the depsidone ester linkage. Fifteen first-generation unguinol analogues were synthesised and screened against a panel of bacteria, fungi and mammalian cells to formulate a basic structure activity relationship (SAR) for the unguinol pharmacophore. Based on the SAR studies, we synthesised a further nineteen second-generation analogues, specifically aimed at improving the antibacterial potency of the pharmacophore. In vitro antibacterial activity testing of these compounds revealed that 3-O-(2-fluorobenzyl)unguinol and 3-O-(2,4-difluorobenzyl)unguinol showed potent activity against both methicillin-susceptible and methicillin-resistant Staphylococcus aureus (MIC 0.25-1 µg mL-1) and are promising candidates for further development in vivo.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Compostos Heterocíclicos com 3 Anéis/química , Compostos Heterocíclicos com 3 Anéis/farmacologia , Animais , Antibacterianos/síntese química , Linhagem Celular , Técnicas de Química Sintética , Avaliação Pré-Clínica de Medicamentos , Compostos Heterocíclicos com 3 Anéis/síntese química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana
12.
Org Biomol Chem ; 19(3): 587-595, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33242032

RESUMO

The hancockiamides are an unusual new family of N-cinnamoylated piperazines from the Australian soil fungus Aspergillus hancockii. Genomic analyses of A. hancockii identified a biosynthetic gene cluster (hkm) of 12 genes, including two single-module nonribosomal peptide synthetase (NRPS) genes. Heterologous expression of the hkm cluster in A. nidulans confirmed its role in the biosynthesis of the hancockiamides. We further demonstrated that a novel cytochrome P450, Hkm5, catalyses the methylenedioxy bridge formation, and that the PAL gene hkm12 is dispensable, but contributes to increased production of the cinnamoylated hancockiamides. In vitro enzymatic assays and substrate feeding studies demonstrated that NRPS Hkm11 activates and transfers trans-cinnamate to the piperazine scaffold and has flexibility to accept bioisosteric thienyl and furyl analogues. This is the first reported cinnamate-activating fungal NRPS. Expression of a truncated cluster lacking the acetyltransferase gene led to seven additional congeners, including an unexpected family of 2,5-dibenzylpiperazines. These pleiotropic effects highlight the plasticity of the pathway and the power of this approach for accessing novel natural product scaffolds.


Assuntos
Aspergillus/metabolismo , Peptídeo Sintases/metabolismo , Piperazinas/química , Piperazinas/metabolismo , Aspergillus/genética , Cinética , Família Multigênica/genética
13.
Nature ; 525(7567): 140-3, 2015 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-26308900

RESUMO

Methane-oxidizing bacteria (methanotrophs) require large quantities of copper for the membrane-bound (particulate) methane monooxygenase. Certain methanotrophs are also able to switch to using the iron-containing soluble methane monooxygenase to catalyse methane oxidation, with this switchover regulated by copper. Methane monooxygenases are nature's primary biological mechanism for suppressing atmospheric levels of methane, a potent greenhouse gas. Furthermore, methanotrophs and methane monooxygenases have enormous potential in bioremediation and for biotransformations producing bulk and fine chemicals, and in bioenergy, particularly considering increased methane availability from renewable sources and hydraulic fracturing of shale rock. Here we discover and characterize a novel copper storage protein (Csp1) from the methanotroph Methylosinus trichosporium OB3b that is exported from the cytosol, and stores copper for particulate methane monooxygenase. Csp1 is a tetramer of four-helix bundles with each monomer binding up to 13 Cu(I) ions in a previously unseen manner via mainly Cys residues that point into the core of the bundle. Csp1 is the first example of a protein that stores a metal within an established protein-folding motif. This work provides a detailed insight into how methanotrophs accumulate copper for the oxidation of methane. Understanding this process is essential if the wide-ranging biotechnological applications of methanotrophs are to be realized. Cytosolic homologues of Csp1 are present in diverse bacteria, thus challenging the dogma that such organisms do not use copper in this location.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cobre/metabolismo , Metano/metabolismo , Methylosinus trichosporium/química , Motivos de Aminoácidos , Cristalografia por Raios X , Citosol/metabolismo , Metano/química , Methylosinus trichosporium/enzimologia , Modelos Moleculares , Oxirredução , Oxigenases/metabolismo , Dobramento de Proteína , Estrutura Secundária de Proteína
14.
Proc Natl Acad Sci U S A ; 115(51): 13081-13086, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30498029

RESUMO

The climate-active gas isoprene (2-methyl-1,3-butadiene) is released to the atmosphere in huge quantities, almost equaling that of methane, yet we know little about the biological cycling of isoprene in the environment. Although bacteria capable of growth on isoprene as the sole source of carbon and energy have previously been isolated from soils and sediments, no microbiological studies have targeted the major source of isoprene and examined the phyllosphere of isoprene-emitting trees for the presence of degraders of this abundant carbon source. Here, we identified isoprene-degrading bacteria in poplar tree-derived microcosms by DNA stable isotope probing. The genomes of isoprene-degrading taxa were reconstructed, putative isoprene metabolic genes were identified, and isoprene-related gene transcription was analyzed by shotgun metagenomics and metatranscriptomics. Gram-positive bacteria of the genus Rhodococcus proved to be the dominant isoprene degraders, as previously found in soil. However, a wider diversity of isoprene utilizers was also revealed, notably Variovorax, a genus not previously associated with this trait. This finding was confirmed by expression of the isoprene monooxygenase from Variovorax in a heterologous host. A Variovorax strain that could grow on isoprene as the sole carbon and energy source was isolated. Analysis of its genome confirmed that it contained isoprene metabolic genes with an identical layout and high similarity to those identified by DNA-stable isotope probing and metagenomics. This study provides evidence of a wide diversity of isoprene-degrading bacteria in the isoprene-emitting tree phyllosphere and greatly enhances our understanding of the biodegradation of this important metabolite and climate-active gas.


Assuntos
Butadienos/metabolismo , Comamonadaceae/metabolismo , Genoma Bacteriano , Hemiterpenos/metabolismo , Metagenômica , Oxigenases de Função Mista/metabolismo , Populus/metabolismo , Rhodococcus/metabolismo , Biodegradação Ambiental , Comamonadaceae/classificação , Comamonadaceae/genética , DNA Bacteriano/genética , Oxigenases de Função Mista/genética , Filogenia , Populus/microbiologia , Rhodococcus/classificação , Rhodococcus/genética , Microbiologia do Solo
15.
Microbiology (Reading) ; 166(10): 894-908, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33085587

RESUMO

Methane-oxidizing bacteria (methanotrophs) play a vital role in reducing atmospheric methane emissions, and hence mitigating their potent global warming effects. A significant proportion of the methane released is thermogenic natural gas, containing associated short-chain alkanes as well as methane. It was one hundred years following the description of methanotrophs that facultative strains were discovered and validly described. These can use some multi-carbon compounds in addition to methane, often small organic acids, such as acetate, or ethanol, although Methylocella strains can also use short-chain alkanes, presumably deriving a competitive advantage from this metabolic versatility. Here, we review the diversity and molecular ecology of facultative methanotrophs. We discuss the genetic potential of the known strains and outline the consequent benefits they may obtain. Finally, we review the biotechnological promise of these fascinating microbes.


Assuntos
Alphaproteobacteria/genética , Alphaproteobacteria/metabolismo , Metano/metabolismo , Álcoois/metabolismo , Alcanos/metabolismo , Alphaproteobacteria/classificação , Alphaproteobacteria/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biotecnologia , Carbono/metabolismo , Oxigenases/genética , Oxigenases/metabolismo , Filogenia , Microbiologia do Solo
16.
Microbiology (Reading) ; 166(7): 600-613, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32441612

RESUMO

The climate-active gas isoprene is the major volatile produced by a variety of trees and is released into the atmosphere in enormous quantities, on a par with global emissions of methane. While isoprene production in plants and its effect on atmospheric chemistry have received considerable attention, research into the biological isoprene sink has been neglected until recently. Here, we review current knowledge on the sources and sinks of isoprene and outline its environmental effects. Focusing on degradation by microbes, many of which are able to use isoprene as the sole source of carbon and energy, we review recent studies characterizing novel isoprene degraders isolated from soils, marine sediments and in association with plants. We describe the development and use of molecular methods to identify, quantify and genetically characterize isoprene-degrading strains in environmental samples. Finally, this review identifies research imperatives for the further study of the environmental impact, ecology, regulation and biochemistry of this interesting group of microbes.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Butadienos/metabolismo , Hemiterpenos/metabolismo , Redes e Vias Metabólicas/genética , Biodegradação Ambiental , Genes Bacterianos , Plantas/microbiologia , Água do Mar/microbiologia , Microbiologia do Solo
17.
Appl Environ Microbiol ; 86(9)2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32086308

RESUMO

Ammonia monooxygenase (AMO) is a key nitrogen-transforming enzyme belonging to the same copper-dependent membrane monooxygenase family (CuMMO) as the particulate methane monooxygenase (pMMO). The AMO from ammonia-oxidizing archaea (AOA) is very divergent from both the AMO of ammonia-oxidizing bacteria (AOB) and the pMMO from methanotrophs, and little is known about the structure or substrate range of the archaeal AMO. This study compares inhibition by C2 to C8 linear 1-alkynes of AMO from two phylogenetically distinct strains of AOA, "Candidatus Nitrosocosmicus franklandus" C13 and "Candidatus Nitrosotalea sinensis" Nd2, with AMO from Nitrosomonas europaea and pMMO from Methylococcus capsulatus (Bath). An increased sensitivity of the archaeal AMO to short-chain-length alkynes (≤C5) appeared to be conserved across AOA lineages. Similarities in C2 to C8 alkyne inhibition profiles between AMO from AOA and pMMO from M. capsulatus suggested that the archaeal AMO has a narrower substrate range than N. europaea AMO. Inhibition of AMO from "Ca Nitrosocosmicus franklandus" and N. europaea by the aromatic alkyne phenylacetylene was also investigated. Kinetic data revealed that the mechanisms by which phenylacetylene inhibits "Ca Nitrosocosmicus franklandus" and N. europaea are different, indicating differences in the AMO active site between AOA and AOB. Phenylacetylene was found to be a specific and irreversible inhibitor of AMO from "Ca Nitrosocosmicus franklandus," and it does not compete with NH3 for binding at the active site.IMPORTANCE Archaeal and bacterial ammonia oxidizers (AOA and AOB, respectively) initiate nitrification by oxidizing ammonia to hydroxylamine, a reaction catalyzed by ammonia monooxygenase (AMO). AMO enzyme is difficult to purify in its active form, and its structure and biochemistry remain largely unexplored. The bacterial AMO and the closely related particulate methane monooxygenase (pMMO) have a broad range of hydrocarbon cooxidation substrates. This study provides insights into the AMO of previously unstudied archaeal genera, by comparing the response of the archaeal AMO, a bacterial AMO, and pMMO to inhibition by linear 1-alkynes and the aromatic alkyne, phenylacetylene. Reduced sensitivity to inhibition by larger alkynes suggests that the archaeal AMO has a narrower hydrocarbon substrate range than the bacterial AMO, as previously reported for other genera of AOA. Phenylacetylene inhibited the archaeal and bacterial AMOs at different thresholds and by different mechanisms of inhibition, highlighting structural differences between the two forms of monooxygenase.


Assuntos
Alcinos/metabolismo , Archaea/metabolismo , Oxirredutases/metabolismo , Amônia/metabolismo
18.
Microb Cell Fact ; 19(1): 144, 2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32677952

RESUMO

BACKGROUND: Methylocella silvestris is a facultative aerobic methanotrophic bacterium which uses not only methane, but also other alkanes such as ethane and propane, as carbon and energy sources. Its high metabolic versatility, together with the availability of tools for its genetic engineering, make it a very promising platform for metabolic engineering and industrial biotechnology using natural gas as substrate. RESULTS: The first Genome Scale Metabolic Model for M. silvestris is presented. The model has been used to predict the ability of M. silvestris to grow on 12 different substrates, the growth phenotype of two deletion mutants (ΔICL and ΔMS), and biomass yield on methane and ethanol. The model, together with phenotypic characterization of the deletion mutants, revealed that M. silvestris uses the glyoxylate shuttle for the assimilation of C1 and C2 substrates, which is unique in contrast to published reports of other methanotrophs. Two alternative pathways for propane metabolism have been identified and validated experimentally using enzyme activity tests and constructing a deletion mutant (Δ1641), which enabled the identification of acetol as one of the intermediates of propane assimilation via 2-propanol. The model was also used to integrate proteomic data and to identify key enzymes responsible for the adaptation of M. silvestris to different substrates. CONCLUSIONS: The model has been used to elucidate key metabolic features of M. silvestris, such as its use of the glyoxylate shuttle for the assimilation of one and two carbon compounds and the existence of two parallel metabolic pathways for propane assimilation. This model, together with the fact that tools for its genetic engineering already exist, paves the way for the use of M. silvestris as a platform for metabolic engineering and industrial exploitation of methanotrophs.


Assuntos
Beijerinckiaceae/crescimento & desenvolvimento , Beijerinckiaceae/genética , Isocitrato Liase/genética , Malato Sintase/genética , Modelos Biológicos , Propano/metabolismo , Carbono/metabolismo , Etanol/metabolismo , Genes Bacterianos , Engenharia Genética , Glioxilatos/metabolismo , Microbiologia Industrial , Redes e Vias Metabólicas/genética , Metano/metabolismo , Mutação , Proteômica
19.
Org Biomol Chem ; 18(30): 5879-5890, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32672321

RESUMO

Stereodivergence in Nature encapsulates both enzymatic (biosynthetic) and non-enzymatic (chemical) diversification of natural product scaffolds arising from a single biosynthetic pathway. Herein, we report a fascinating example of stereodivergence for the bacterial polyketide enterocin, which we observed to undergo a series of facile skeletal rearrangements in solution, leading to four distinct isomeric structures. The final distribution of the four isomers was found to be highly sensitive to the conditions used, including solvent, temperature and pH. In this study, we have investigated the kinetics of these isomeric conversions, and using a combination of DFT and thermochemical calculations, were able to establish a mechanism detailing a concerted rearrangement and an unusual "gymnastic" sequence of pseudo-chair-boat conformational interconversions. In addition to these kinetic and mechanistic studies, we also performed a semisynthetic study aimed at stabilising the enterocin scaffold. In total, seven analogues of enterocin were synthesised and investigated for their stability and in vitro activity against a panel of bacteria, fungi, plants and mammalian cells.


Assuntos
Ginástica
20.
J Nat Prod ; 83(4): 1051-1060, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32119543

RESUMO

Cultivation and extraction of the fungus Talaromyces stipitatus led to the isolation of five new oxyphenalenone-amino acid hybrids, which were named talauxins E, Q, V, L, and I based on the corresponding one-letter amino acid codes, along with their putative biosynthetic precursor, duclauxin. The rapid reaction of duclauxin with amino acids to produce talauxins was demonstrated in vitro and exploited to generate a small library of natural and unnatural talauxins. Talauxin V was shown to undergo spontaneous elimination of methyl acetate to yield the corresponding neoclauxin scaffold. This process was modeled using density functional theory calculations, revealing a dramatic change in conformation resulting from the syn elimination of methyl acetate.


Assuntos
Fenalenos/química , Talaromyces/química , Cromonas/química , Cromonas/isolamento & purificação , Cromonas/farmacologia , Conformação Molecular , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA