Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Clin Transl Oncol ; 24(1): 127-144, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34370182

RESUMO

Metaplastic breast carcinoma (MBC) is a rare breast cancer subtype with rapid growth, high rates of metastasis, recurrence and drug resistance, and diverse molecular and histological heterogeneity. Patient-derived xenografts (PDXs) provide a translational tool and physiologically relevant system to evaluate tumor biology of rare subtypes. Here, we provide an in-depth comprehensive characterization of a new PDX model for MBC, TU-BcX-4IC. TU-BcX-4IC is a clinically aggressive tumor exhibiting rapid growth in vivo, spontaneous metastases, and elevated levels of cell-free DNA and circulating tumor cell DNA. Relative chemosensitivity of primary cells derived from TU-BcX-4IC was performed using the National Cancer Institute (NCI) oncology drug set, crystal violet staining, and cytotoxic live/dead immunofluorescence stains in adherent and organoid culture conditions. We employed novel spheroid/organoid incubation methods (Pu·MA system) to demonstrate that TU-BcX-4IC is resistant to paclitaxel. An innovative physiologically relevant system using human adipose tissue was used to evaluate presence of cancer stem cell-like populations ex vivo. Tissue decellularization, cryogenic-scanning electron microscopy imaging and rheometry revealed consistent matrix architecture and stiffness were consistent despite serial transplantation. Matrix-associated gene pathways were essentially unchanged with serial passages, as determined by qPCR and RNA sequencing, suggesting utility of decellularized PDXs for in vitro screens. We determined type V collagen to be present throughout all serial passage of TU-BcX-4IC tumor, suggesting it is required for tumor maintenance and is a potential viable target for MBC. In this study we introduce an innovative and translational model system to study cell-matrix interactions in rare cancer types using higher passage PDX tissue.


Assuntos
Antineoplásicos/uso terapêutico , Modelos Biológicos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Animais , Modelos Animais de Doenças , Xenoenxertos , Humanos , Ensaios Antitumorais Modelo de Xenoenxerto
2.
J Am Soc Mass Spectrom ; 7(5): 458-66, 1996 May.
Artigo em Inglês | MEDLINE | ID: mdl-24203400

RESUMO

A novel mass spectrometer system for elemental analysis is described. The instrument combines an inductively coupled plasma (ICP) ion source with a Mattauch-Herzog mass spectrometer and multichannel ion detector. Ion detection is simultaneous and an elemental mass spectrum (20-230 µ) can be acquired in <10 ms. The instrument can be used with either Ar or He plasma sources. The speed of the system makes it well suited for acquisition of fast (10-100-ms duration) transient signals, such as those generated by pulsed laser ablation sample introduction. Preliminary system performance characteristics, which include detection limits, stability, and measurement accuracy, obtained with an Ar ICP are presented. The application of the instrument to the analysis of solid samples by laser ablation is discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA