Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Virol ; 98(6): e0057624, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38767375

RESUMO

Kaposi sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus-8, is the causal agent of Kaposi sarcoma, a cancer that appears as tumors on the skin or mucosal surfaces, as well as primary effusion lymphoma and KSHV-associated multicentric Castleman disease, which are B-cell lymphoproliferative disorders. Effective prophylactic and therapeutic strategies against KSHV infection and its associated diseases are needed. To develop these strategies, it is crucial to identify and target viral glycoproteins involved in KSHV infection of host cells. Multiple KSHV glycoproteins expressed on the viral envelope are thought to play a pivotal role in viral infection, but the infection mechanisms involving these glycoproteins remain largely unknown. We investigated the role of two KSHV envelope glycoproteins, KSHV complement control protein (KCP) and K8.1, in viral infection in various cell types in vitro and in vivo. Using our newly generated anti-KCP antibodies, previously characterized anti-K8.1 antibodies, and recombinant mutant KSHV viruses lacking KCP, K8.1, or both, we demonstrated the presence of KCP and K8.1 on the surface of both virions and KSHV-infected cells. We showed that KSHV lacking KCP and/or K8.1 remained infectious in KSHV-susceptible cell lines, including epithelial, endothelial, and fibroblast, when compared to wild-type recombinant KSHV. We also provide the first evidence that KSHV lacking K8.1 or both KCP and K8.1 can infect human B cells in vivo in a humanized mouse model. Thus, these results suggest that neither KCP nor K8.1 is required for KSHV infection of various host cell types and that these glycoproteins do not determine KSHV cell tropism. IMPORTANCE: Kaposi sarcoma-associated herpesvirus (KSHV) is an oncogenic human gamma-herpesvirus associated with the endothelial malignancy Kaposi sarcoma and the lymphoproliferative disorders primary effusion lymphoma and multicentric Castleman disease. Determining how KSHV glycoproteins such as complement control protein (KCP) and K8.1 contribute to the establishment, persistence, and transmission of viral infection will be key for developing effective anti-viral vaccines and therapies to prevent and treat KSHV infection and KSHV-associated diseases. Using newly generated anti-KCP antibodies, previously characterized anti-K8.1 antibodies, and recombinant mutant KSHV viruses lacking KCP and/or K8.1, we show that KCP and K8.1 can be found on the surface of both virions and KSHV-infected cells. Furthermore, we show that KSHV lacking KCP and/or K8.1 remains infectious to diverse cell types susceptible to KSHV in vitro and to human B cells in vivo in a humanized mouse model, thus providing evidence that these viral glycoproteins are not required for KSHV infection.


Assuntos
Herpesvirus Humano 8 , Sarcoma de Kaposi , Proteínas do Envelope Viral , Proteínas Virais , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/fisiologia , Humanos , Animais , Camundongos , Proteínas Virais/metabolismo , Proteínas Virais/genética , Sarcoma de Kaposi/virologia , Proteínas do Envelope Viral/metabolismo , Proteínas do Envelope Viral/genética , Linhagem Celular , Hiperplasia do Linfonodo Gigante/virologia , Hiperplasia do Linfonodo Gigante/metabolismo , Infecções por Herpesviridae/virologia , Infecções por Herpesviridae/metabolismo , Células HEK293 , Células Endoteliais/virologia
2.
Int J Mol Sci ; 21(2)2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31936170

RESUMO

Chimeric antigen receptors (CARs) have found clinical success in B cell malignancies, but a dearth of potential targets limits their wider clinical application, especially in solid tumours. Here, we describe the development of an anti-annexin A2 CAR, CAR(2448), derived from an antibody found to have activity against epithelial ovarian cancer cell lines. The spacer length of CAR(2448) was optimised based on in vitro cytotoxic activity against ovarian cancer (OC) cell lines via a real-time cytotoxicity assay. The longer spacer CAR(2448)L T cells exhibit significant effector activity, inducing inflammatory cytokine release and cytotoxicity against OC cell lines. Furthermore, CAR(2448)L-BBz T cells induced enhanced survival in an in vivo OC xenograft model and reduced tumour volume by 76.6%. Our preclinical studies of CAR(2448) suggest its potential for the unmet need of novel strategies for the treatment of ovarian cancer.


Assuntos
Anexina A2/imunologia , Carcinoma Epitelial do Ovário/terapia , Imunoterapia Adotiva , Neoplasias Ovarianas/terapia , Receptores de Antígenos Quiméricos/uso terapêutico , Animais , Anexina A2/antagonistas & inibidores , Carcinoma Epitelial do Ovário/imunologia , Linhagem Celular Tumoral , Feminino , Humanos , Imunoterapia Adotiva/métodos , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias Ovarianas/imunologia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Biotechnol Bioeng ; 116(11): 2996-3005, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31388993

RESUMO

This study describes the use of a previously reported chimerised monoclonal antibody (mAb), ch2448, to kill human embryonic stem cells (hESCs) in vivo and prevent or delay the formation of teratomas. ch2448 was raised against hESCs and was previously shown to effectively kill ovarian and breast cancer cells in vitro and in vivo. The antigen target was subsequently found to be Annexin A2, an oncofetal antigen expressed on both embryonic cells and cancer cells. Against cancer cells, ch2448 binds and kills via antibody-dependent cell-mediated cytotoxicity (ADCC) and/or antibody-drug conjugate (ADC) routes. Here, we investigate if the use of ch2448 can be extended to hESC. ch2448 was found to bind specifically to undifferentiated hESC but not differentiated progenitors. Similar to previous study using cancer cells, ch2448 kills hESC in vivo either indirectly by eliciting ADCC or directly as an ADC. The treatment with ch2448 post-transplantation eliminated the in vivo circulating undifferentiated cells and prevented or delayed the formation of teratomas. This surveillance role of ch2448 adds an additional layer of safeguard to enhance the safety and efficacious use of pluripotent stem cell-derived products in regenerative medicine. Thereby, translating the use of ch2448 in the treatment of cancers to a proof of concept study in hESC (or pluripotent stem cell [PSC]), we show that mAbs can also be used to eliminate teratoma forming cells in vivo during PSC-derived cell therapies. We propose to use this strategy to complement existing methods to eliminate teratoma-forming cells in vitro. Residual undifferentiated cells may escape in vitro removal methods and be introduced into patients together with the differentiated cells.


Assuntos
Anexina A2/metabolismo , Antineoplásicos Imunológicos/farmacologia , Rastreamento de Células , Células-Tronco Embrionárias Humanas , Proteínas de Neoplasias/metabolismo , Transplante de Células-Tronco , Teratoma , Animais , Xenoenxertos , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/patologia , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Teratoma/diagnóstico por imagem , Teratoma/metabolismo , Teratoma/patologia
4.
Front Immunol ; 15: 1445209, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39346922

RESUMO

Introduction: Epstein-Barr virus (EBV) is an oncogenic human herpesvirus associated with ~350,000 cases of lymphoid and epithelial malignancies every year, and is etiologically linked to infectious mononucleosis and multiple sclerosis. Despite four decades of research, no EBV vaccine candidate has yet reached licensure. Most previous vaccine attempts focused on a single viral entry glycoprotein, gp350, but recent data from clinical and pre-clinical studies, and the elucidation of viral entry mechanisms, support the inclusion of multiple entry glycoproteins in EBV vaccine design. Methods: Here we generated a modified vaccinia Ankara (MVA)-vectored EBV vaccine, MVA-EBV5-2, that targets five EBV entry glycoproteins, gp350, gB, and the gp42gHgL complex. We characterized the genetic and translational stability of the vaccine, followed by immunogenicity assessment in BALB/c mice and rhesus lymphocryptovirus-negative rhesus macaques as compared to a gp350-based MVA vaccine. Finally, we assessed the efficacy of MVA-EBV5-2-immune rhesus serum at preventing EBV infection in human CD34+ hematopoietic stem cell-reconstituted NSG mice, under two EBV challenge doses. Results: The MVA-EBV5-2 vaccine was genetically and translationally stable over 10 viral passages as shown by genetic and protein expression analysis, and when administered to female and male BALB/c mice, elicited serum EBV-specific IgG of both IgG1 and IgG2a subtypes with neutralizing activity in vitro. In Raji B cells, this neutralizing activity outperformed that of serum from mice immunized with a monovalent MVA-vectored gp350 vaccine. Similarly, MVA-EBV5-2 elicited EBV-specific IgG in rhesus macaques that were detected in both serum and saliva of immunized animals, with serum antibodies demonstrating neutralizing activity in vitro that outperformed serum from MVA-gp350-immunized macaques. Finally, pre-treatment with serum from MVA-EBV5-2-immunized macaques resulted in fewer EBV-infected mice in the two challenge experiments than pretreatment with serum from pre-immune macaques or macaques immunized with the monovalent gp350-based vaccine. Discussion: These results support the inclusion of multiple entry glycoproteins in EBV vaccine design and position our vaccine as a strong candidate for clinical translation.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Macaca mulatta , Animais , Humanos , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Infecções por Vírus Epstein-Barr/imunologia , Infecções por Vírus Epstein-Barr/prevenção & controle , Camundongos , Herpesvirus Humano 4/imunologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Camundongos Endogâmicos BALB C , Vacinas de DNA/imunologia , Feminino , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Vetores Genéticos/genética , Vaccinia virus/imunologia , Vaccinia virus/genética
5.
Oncotarget ; 9(17): 13206-13221, 2018 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-29568351

RESUMO

Monoclonal antibodies (mAbs) play an increasingly important role in cancer therapy. To address the wide heterogeneity of the disease, the identification of novel antigen targets and the development of mAbs against them are needed. Our lab previously generated a panel of mAbs against human embryonic stem cells (hESC) using a whole cell immunization approach in mice. These mAbs can potentially target oncofetal antigens and be repurposed for antibody or antibody drug conjugate (ADC) therapy. From this panel, the novel IgG1 2448 was found to bind surface antigens on hESC and multiple cancer cell lines. Here, we show 2448 targets a unique glycan epitope on annexin A2 (ANXA2) and can potentially monitor the Epithelial-Mesenchymal Transition (EMT) in ovarian and breast cancer. To evaluate 2448 as a potential drug, 2448 was engineered and expressed as a chimeric IgG1. Chimeric 2448 (ch2448) demonstrated efficient and specific killing when conjugated to cytotoxic payloads as an ADC. In addition, ch2448 elicited potent antibody-dependent cell-mediated cytotoxicity (ADCC) activity in vitro and in vivo. Further engineering of ch2448 to remove fucose in the Fc domain enhanced ADCC. Overall, these findings indicate that embryonic ANXA2 is an attractive target and suggest that ch2448 is a promising candidate for further therapeutic development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA