Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Langmuir ; 40(10): 5433-5443, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38427972

RESUMO

An efficient and sustainable agriculture calls for the development of novel agrochemical delivery systems able to release agrochemicals in a controlled manner. This study investigated the controlled release of the insecticide methoxyfenozide (MFZ) from lignin (LN) nanoparticles (LNPs). LN-grafted poly(ε-caprolactone) (LN-g-PCL) polymers were synthesized using two grafting methods, ring-opening polymerization (ROP)(LN-g-PCLp) and acylation reaction (LN-g-PCLa), creating polymers capable of self-assembling into nanoparticles of different properties, without surfactants. The LN-g-PCLp polymers exhibited a degree of polymerization (DP) from 22 to 101, demonstrating enhanced thermal stability after LN incorporation. LNPs loaded with MFZ exhibited a spherical core-shell structure with a hydrophilic LN outer layer and hydrophobic PCL core, with sizes affected by grafting methods and DP. LNPs controlled MFZ release, displaying variation in release profiles depending on the grafting methodology used, LN-g-PCLp DP, and temperature variations (23 to 30 °C). LNPs formulated with LN-g-PCLa showed a cumulative release of MFZ of 36.78 ± 1.23% over 196 h. Comparatively, increasing the DP of the LN-g-PCLp polymers, a reduction of the LNPs release rate from 92.39 ± 1.46% to 70.59 ± 2.40% was achieved within the same time frame. These findings contribute to identifying ways to modulate the controlled release of agrochemicals by incorporating them in renewable-based LNPs.

2.
Mol Pharm ; 19(12): 4705-4716, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36374992

RESUMO

Traditional approaches to vaccines use whole organisms to trigger an immune response, but they do not typically generate robust cellular-mediated immunity and have various safety risks. Subunit vaccines composed of proteins and/or peptides represent an attractive and safe alternative to whole organism vaccines, but they are poorly immunogenic. Though there are biological reasons for the poor immunogenicity of proteins and peptides, one other key to their relative lack of immunogenicity could be attributed to the poor pharmacokinetic properties of exogenously delivered proteins and peptides. For instance, peptides often aggregate at the site of injection and are not stable in biological fluids, proteins and peptides are rapidly cleared from circulation, and both have poor cellular internalization and endosomal escape. Herein, we developed a delivery system to address the lack of protein immunogenicity by overcoming delivery barriers as well as codelivering immune-stimulating adjuvants. The glycopolymeric nanoparticles (glycoNPs) are composed of a dual-stimuli-responsive block glycopolymer, poly[2-(diisopropylamino)ethyl methacrylate]-b-poly[(pyridyl disulfide ethyl methacrylate)-co-(methacrylamidoglucopyranose)] (p[DPA-b-(PDSMA-co-MAG)]). This polymer facilitates protein conjugation and cytosolic release, the pH-responsive release of lipophilic adjuvants, and pH-dependent membrane disruption to ensure cytosolic delivery of antigens. We synthesized p[DPA-b-(PDSMA-co-MAG)] by reversible addition-fragmentation chain transfer (RAFT) polymerization, followed by the formation and physicochemical characterization of glycoNPs using the p[DPA-b-(PDSMA-co-MAG)] building blocks. These glycoNPs conjugated the model antigen ovalbumin (OVA) and released OVA in response to elevated glutathione levels. Moreover, the glycoNPs displayed pH-dependent drug release of the model hydrophobic drug Nile Red while also exhibiting pH-responsive endosomolytic behavior as indicated by a red blood cell hemolysis assay. GlycoNPs coloaded with OVA and the toll-like receptor 7/8 (TLR-7/8) agonist Resiquimod (R848) activated DC 2.4 dendritic cells (DCs) significantly more than free OVA and R848 and led to robust antigen presentation of the OVA epitope SIINFEKL on major histocompatibility complex I (MHC-I). In sum, the dual-stimuli-responsive glycopolymer introduced here overcomes major protein and peptide delivery barriers and could vastly improve the immunogenicity of protein-based vaccines.


Assuntos
Antígenos , Nanopartículas , Animais , Camundongos , Adjuvantes Imunológicos , Ovalbumina , Nanopartículas/química , Vacinas de Subunidades Antigênicas , Adjuvantes Farmacêuticos , Metacrilatos , Células Dendríticas , Camundongos Endogâmicos C57BL
3.
Int J Biometeorol ; 66(12): 2489-2500, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36239801

RESUMO

The objective of this study was to develop an equation to predict rectal temperature (RT) using body surface temperatures (BSTs), physiological and climatic variables in pubertal Holstein heifers in an arid region. Two hundred Holstein heifers were used from July to September during two consecutive summers (2019 and 2020). Respiratory frequency (RF) was used as a physiological variable and ambient temperature, relative humidity and temperature-humidity index as climatic variables. For the body surface temperatures, infrared thermography was used considering the following anatomical regions: shoulder, belly, rump, leg, neck, head, forehead, nose, loin, leg, vulva, eye, flank, and lateral area (right side). Initially, a Pearson correlation analysis examined the relationship among variables, and then multiple linear regression analysis was used to develop the prediction equation. Physiological parameters RT and RF were highly correlated with each other (r = 0.73; P˂0.0001), while all BST presented from low to moderate correlations with RT and RF. BST forehead temperature (FH) showed the highest (r = 0.58) correlation with RT. The equation RT = 35.55 + 0.033 (RF) + 0.030 (FH) + ei is considered the best regression equation model to predict RT in Holstein heifers in arid zones. This decision was made on the indicators R2 = 60%, RMSE = 0.25, and AIC = 0.25, which were considered adequate variability indicators.


Assuntos
Temperatura Corporal , Termografia , Bovinos , Animais , Feminino , Temperatura , Umidade , Respiração
4.
Langmuir ; 32(33): 8392-402, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27504929

RESUMO

Photoinduced cross-linking of unmodified proteins, PICUP, was extended to core-shell silica-polypeptide composite particles to produce poly(colloid)s. Silica particles coated with poly(l-tyrosine), PTYR-SiO2, served as the monomer units. The PICUP reaction accomplished the formation of dityrosil linkages between the tyrosine units by illumination of photo-oxidizing ruthenium(II) bipyridyl catalyst under physiological conditions. The PICUP method was compared with an enzymatic route intermediated by horseradish peroxidase as catalyst. The PTYR-SiO2 particles feature high PTYR content in the shell, which facilitated the formation of heavily cross-linked but unstructured aggregates. After magnetic alignment of superparamagnetic PTYR-SiO2-cobalt composite particles, only the PICUP approach enabled the preparation of isolated chain-like poly(colloid)s. The cross-linking products were confirmed by FTIR. The native secondary structure of poly(l-tyrosine) is preserved in these poly(colloid)s. Because the PICUP reaction does not require the modification of the polypeptide structure, the cross-linked PTYR will retain its characteristic functions as a poly(amino acid). The PICUP method opens the door to a variety of PTYR-based poly(colloid) architectures.


Assuntos
Peptídeos/química , Cobalto/química , Coloides/química , Reagentes de Ligações Cruzadas , Difusão Dinâmica da Luz , Peroxidase do Rábano Silvestre , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/ultraestrutura , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Processos Fotoquímicos , Polimerização , Agregados Proteicos , Dióxido de Silício/química , Espectroscopia de Infravermelho com Transformada de Fourier
5.
Biomacromolecules ; 16(9): 3062-72, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26270020

RESUMO

Periodic patterns resembling spirals were observed to form spontaneously upon unassisted cooling of d-glucaric acid- and d-galactaric acid-based polyamide solutions in N-methyl-N-morpholine oxide (NMMO) monohydrate. Similar observations were made in d-galactaric acid-based polyamide/ionic liquid (IL) solutions. The morphologies were investigated by optical, polarized light and confocal microscopy assays to reveal pattern details. Differential scanning calorimetry was used to monitor solution thermal behavior. Small- and wide-angle X-ray scattering data reflected the complex and heterogeneous nature of the self-organized patterns. Factors such as concentration and temperature were found to influence spiral dimensions and geometry. The distance between rings followed a first-order exponential decay as a function of polymer concentration. Fourier-Transform Infrared Microspectroscopy analysis of spirals pointed to H-bonding between the solvent and the pendant hydroxyl groups of the glucose units from the polymer backbone. Tests on self-organization into spirals of ketal-protected d-galactaric acid polyamides in NMMO monohydrate confirmed the importance of the monosaccharide's pendant free hydroxyl groups on the formation of these patterns. Rheology performed on d-galactaric-based polyamides at high concentration in NMMO monohydrate solution revealed the optimum conditions necessary to process these materials as fibers by spinning. The self-organization of these sugar-based polyamides mimics certain biological materials.


Assuntos
Materiais Biomiméticos/química , Óxidos N-Cíclicos/química , Morfolinas/química , Nylons/química
6.
Langmuir ; 30(12): 3373-80, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24635125

RESUMO

Poly(tetrafluoroethylene) (PTFE) latex particles have been analyzed and sorted according to size using asymmetric flow field flow fractionation (AF4) coupled with multiple-angle light scattering (MALS). Characterization of fractions by regular and depolarized dynamic light scattering confirmed that smaller particles elute prior to larger ones, as expected for field flow fractionation. The measured radii of the optically and geometrically anisotropic particles are consistent with those determined from transmission electron microscopy (TEM). A certain amount of heterogeneity remains in the fractions, but their uniformity for use as diffusion probes is improved. Full characterization of PTFE colloids will require a difficult assessment of the distribution, even within fractions, of the optical anisotropy. A general method to obtain number versus size distributions is presented. This approach is valid even when an online concentration detector is not available or ineffective. The procedure is adaptable to particles of almost any regular shape.

7.
Langmuir ; 28(13): 5562-9, 2012 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-22428537

RESUMO

Amine-functionalized colloidal silica finds use in a variety of applications and fundamental investigations. To explore convenient methods of synthesis and characterization of research-grade materials in relatively large quantities, nearly monodisperse colloidal silica particles were prepared by base-catalyzed hydrolysis of reagent-grade tetraethyl orthosilicate (TEOS) without the traditional time- and energy-consuming distillation step. Radius was varied reliably from 30 to 125 nm by changing the water/TEOS ratio. Asymmetric flow field flow fractionation (AF4) methods with online light scattering detection proved effective in assessing the uniformity of the various preparations. Even highly uniform commercial standards were resolved by AF4. The surface of the colloidal silica was decorated with amino groups using (3-aminopropyl) trimethoxysilane and spacer methyl groups from methyl-trimethoxysilane. The surface density of amino groups was quantified spectrophotometrically after reaction with ninhydrin; the nature of this analysis avoids interference from sample turbidity. As an alternative to the ninhydrin test, an empirical relationship between surface density of amino groups and zeta potential at low pH was found. The size of the colloidal silica was predictably decreased by etching with HF; this method will be effective for some preparations, despite a modest reduction in size uniformity.

8.
Biomacromolecules ; 13(9): 2671-9, 2012 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-22849589

RESUMO

Cellulose nanocrystals (CNCs) were analyzed by asymmetric flow field-flow fractionation (AF4) coupled with multiangle light scattering (MALS) detection. Small fractions were collected from the output of the AF4 apparatus for investigation by transmission electron microscopy (TEM). The influence of CNC injection amount, the number of passes through a high-pressure homogenizer, and different CNC sources on the elution behavior and particle size distribution was investigated. The AF4-MALS results on crystal length were compared with those from TEM. Peak distortion and variation in elution profiles with the increase in sample load were observed. Good resolution was obtained when the injection mass varied from 20 to 40 µg, corresponding to injections of 4-8 µL at a starting concentration of ~5 µg/µL; concentrations during the separation process and at the detector were significantly lower. As the number of homogenization treatments increased, the peak shape became narrower and more symmetrical. This indicates a narrowed crystal length distribution, but regardless of source or homogenization treatment, no CNC preparation was as uniform as tobacco mosaic virus, a well-known rigid rod model structure, whose length was found by AF4-MALS to be in agreement with literature values. CNCs derived from cotton contained longer crystals than those derived from microcrystalline cellulose, as shown by both AF4-MALS and TEM techniques. An advantage of AF4-MALS compared to TEM is the ability to sample large numbers of rodlike particles, which is challenging and time-consuming for TEM image analysis, especially without the presorting afforded by AF4. The good TMV results suggest a high degree of accuracy will pertain to the CNC size distribution measurements.


Assuntos
Celulose/química , Nanopartículas/química , Celulose/ultraestrutura , Fracionamento por Campo e Fluxo , Luz , Microscopia Eletrônica de Transmissão , Nanopartículas/ultraestrutura , Tamanho da Partícula , Espalhamento de Radiação
9.
J Control Release ; 352: 485-496, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36280154

RESUMO

This research demonstrates the development, application, and mechanistic value of a multi-detector asymmetric flow field-flow fractionation (AF4) approach to acquire size-resolved drug loading and release profiles from polymeric nanoparticles (NPs). AF4 was hyphenated with multiple online detectors, including dynamic and multi-angle light scattering for NP size and shape factor analysis, fluorescence for drug detection, and total organic carbon (TOC) to quantify the NPs and dissolved polymer in nanoformulations. The method was demonstrated on poly(lactic-co-glycolic acid) (PLGA) NPs loaded with coumarin 6 (C6) as a lipophilic drug surrogate. The bulk C6 release profile using AF4 was validated against conventional analysis of drug extracted from the NPs and complemented with high performance liquid chromatography - quadrupole time-of-flight (HPLC-QTOF) mass spectrometry analysis of oligomeric PLGA species. Interpretation of the bulk drug release profile was ambiguous, with several release models yielding reasonable fits. In contrast, the size-resolved release profiles from AF4 provided critical information to confidently establish the release mechanism. Specifically, the C6-loaded NPs exhibited size-independent release rate constants and no significant NP size or shape transformations, suggesting surface desorption rather than diffusion through the PLGA matrix or erosion. This conclusion was supported through comparative experimental evaluation of PLGA NPs carrying a fully entrapped drug, enrofloxacin, which showed size-dependent diffusive release, along with density functional theory (DFT) calculations indicating a higher adsorption affinity of C6 onto PLGA. In summary, the development of the size-resolved AF4 method and data analysis framework fulfills salient analytical gaps to determine drug localization and release mechanisms from nanomedicines.


Assuntos
Nanopartículas , Ácido Poliglicólico , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ácido Láctico/química , Liberação Controlada de Fármacos , Tamanho da Partícula , Nanopartículas/química , Portadores de Fármacos/química
10.
J Control Release ; 338: 410-421, 2021 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-34453956

RESUMO

Polymeric nanoparticles (NPs) are typically designed to enhance the efficiency of drug delivery by controlling the drug release rate. Hence, it is critical to obtain an accurate drug release profile. This study presents the first application of asymmetric flow field-flow fractionation (AF4) with fluorescence detection (FLD) to quantify release profiles of fluorescent drugs from polymeric NPs, specifically poly(lactic-co-glycolic acid) NPs loaded with enrofloxacin (PLGA-Enro NPs). In contrast to conventional measurements requiring separation of the NPs and dissolved drugs (typically by dialysis) prior to quantification, AF4 provides in situ removal of unincorporated drugs, while the judicious combination of online FLD and UV detection selectively provides the entrapped drug and PLGA NP concentrations, respectively, and hence the drug loading. NP size and shape factors are simultaneously obtained by online dynamic and multi-angle light scattering (DLS, MALS) detectors. The AF4 and dialysis approaches were compared to evaluate drug release from PLGA-Enro NPs containing a high proportion (≈ 94%) of unincorporated (burst release) drug at three temperatures spanning the glass transition temperature (Tg ≈ 33 °C) of the NPs. The AF4 method clearly captured the temperature dependence of the drug release relative to Tg (from no release at 20 °C to rapid release at 37 °C). In contrast, dialysis was not able to distinguish differences in the extent or rate of release of the entrapped drug because of interferences from the burst release, as well as the dialysis lag time, as supported through a diffusion model and validation experiments on purified NPs with low burst release. Finally, the multi-detector AF4 analysis yielded unique size-dependent release profiles across the entire NP size distribution, with smaller NPs showing faster release consistent with radial diffusion from the NPs. Overall, this study demonstrates the novel application and advantages of multi-detector AF4 methods, particularly AF4-FLD, to obtain direct, size-resolved release profiles of fluorescent drugs from polymeric NPs.


Assuntos
Fracionamento por Campo e Fluxo , Nanopartículas , Liberação Controlada de Fármacos , Tamanho da Partícula , Diálise Renal
11.
Int J Biometeorol ; 54(4): 335-45, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20012753

RESUMO

The aim of this work is to study heat waves (HWs) in Mexicali, Mexico, because numerous deaths have been reported in this city, caused by heatstroke. This research acquires relevancy because several studies have projected that the health impacts of HWs could increase under various climate change scenarios, especially in countries with low adaptive capacity, as is our case. This paper has three objectives: first, to analyze the observed change in the summer (1 June to 15 September) daily maximum temperature during the period from 1951 to 2006; secondly, to characterize the annual and monthly evolution of frequency, duration and intensity of HWs; and finally, to generate scenarios of heat days (HDs) by means of a statistical downscaling model, in combination with a global climate model (HadCM3), for the 2020 s, 2050 s, and 2080 s. The results show summer maximum temperatures featured warming and cooling periods from 1951 until the mid-1980s and, later, a rising tendency, which prevailed until 2006. The duration and intensity of HWs have increased for all summer months, which is an indicator of the severity of the problem; in fact, there are 2.3 times more HWs now than in the decade of the 1970s. The most appropriate distribution for modeling the occurrence of HDs was the Weibull, with the maximum temperature as co-variable. For the 2020 s, 2050 s, and 2080 s, HDs under a medium-high emissions scenario (A2) could increase relative to 1961-1990, by 2.1, 3.6, and 5.1 times, respectively, whereas under a medium-low emissions scenario (B2), HDs could increase by 2.4, 3.4, and 4.0, for the same projections of time.


Assuntos
Mudança Climática , Temperatura Alta/efeitos adversos , Mudança Climática/estatística & dados numéricos , Golpe de Calor/etiologia , Humanos , México , Modelos Teóricos , Saúde Pública , Fatores de Tempo
12.
J Phys Chem B ; 120(29): 7275-88, 2016 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-27434723

RESUMO

When a particle is introduced into a liquid crystal (LC), it distorts the LC director field, leading to new arrangements of the particles. This phenomenon is ordinarily studied using >100 nm particles and ∼2 nm mesogens. Usually the particle surface and mesogens are chemically distinct, which adds an enthalpic effect, even though the more interesting interactions are entropic. To raise the structures to the visible regime, while minimizing chemical differences between the particle surface and mesogen, silica particles coated with an α-helical polypeptide have been prepared and dispersed in lyotropic polypeptide LCs. The polypeptide is poly(γ-stearyl-α,l-glutamate) or PSLG. To make the particles easy to manipulate and easy to find, the silica core included superparamagnetic magnetite (Fe3O4) and covalently attached dye. Two methods were used to place polypeptides on these magnetic, fluorescent particles: a multistep grafting-to approach in which whole polypeptides were attached and a one-pot grafting-from approach in which the polymerization of the monomers was initiated from the particle surface. These approaches resulted in sparse and dense surface coverages, respectively. The influence of surface curvature and polypeptide molecular weight on the design of sparsely covered particles was investigated using the grafting-to approach. The aggregated grafting-from particles when freshly dispersed in a PSLG/solvent matrix disrupted the orientation of the characteristic cholesteric LC (ChLC) phase directors. In time, the hybrid particles were expelled from some domains, enabling the return of the familiar helical twist of the cholesteric mesophase. The sparsely coated grafting-to hybrid particles when inserted in the PSLG/solvent matrix assembled into stable islet-like formations that could not be disrupted even by an external magnetic field. The bulk particles aligned in chains that were easily manipulated by a magnetic field. These results indicate that polypeptide ChLCs can control and facilitate colloidal assembly of particles with matching surfaces.


Assuntos
Cristais Líquidos/química , Peptídeos/química , Dióxido de Silício/química , Coloides/química , Óxido Ferroso-Férrico/química , Campos Magnéticos , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectroscopia de Infravermelho com Transformada de Fourier
13.
J Colloid Interface Sci ; 467: 321-334, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26848827

RESUMO

Particles with an open, porous structure can be used to deliver payloads. It is often of interest to detect such particles in tissue or materials, which is facilitated by addition of dye. A straightforward approach leading to fluorescent, porous silica particles is described. The particles are etched with 3mM aqueous sodium hydroxide, taking advantage of the etching rate difference between normal silica and an interior band of silica that contains covalently attached dye. No additional steps, such as dye labeling or thermal annealing, are required. Etching modeled the internal structure of the fluorescent silica particles by creating meso/macropores and voids, as reflected by nitrogen absorption measurements. In order to investigate whether a polymer shell influences etching, certain composite particles are top-coated with poly(l-lysine) representing neutral or positive charged surfaces under typical pH conditions in living systems. The polypeptide-coated fluorescent silica cores exhibit the same porous morphology as uncoated homologs. The polypeptide topcoat does little to alter the permeation by the etching agent. Preservation of size during etching, confirmed by dynamic light scattering, transmission electron microscopy and small-angle X-ray scattering, simplifies the use of these template-free porous fluorescent particles as platforms for drug encapsulation, drug carriers and in vivo imaging.


Assuntos
Dióxido de Silício/química , Portadores de Fármacos/química , Fluorescência , Tamanho da Partícula , Peptídeos/química , Porosidade , Propriedades de Superfície
14.
Free Radic Biol Med ; 38(4): 515-26, 2005 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-15649654

RESUMO

The pulmonary epithelial lining fluid (ELF) contains substrates, e.g., ascorbic acid (AH2), uric acid (UA), glutathione (GSH), proteins, and unsaturated lipids, which undergo facile reaction with inhaled ozone (O3). Reactions near the ELF gas/liquid interface likely provide the driving force for O3 absorption ("reactive absorption") and constrain O3 diffusion to the underlying epithelium. To investigate the potential mechanisms wherein O3/ELF interactions may induce cellular damage, we utilized a red cell membrane (RCM) model intermittently covered by an aqueous film to mimic the lung surface compartmentation, and evaluated exposure-mediated loss of acetylcholinesterase activity (AChE) and TBARS accumulation. In the absence of aqueous reactants, O3 exposure induced no detectable changes in AChE or TBARS. AH2 and GSH preferentially induced oxidative damage in a dose-dependent fashion. AH2-mediated RCM oxidation was not inhibited by superoxide dismutase, catalase, mannitol, or Fe chelators. O3 reaction with UA, Trolox, or albumin produced no RCM oxidation but oxidation occurred when AH2 was combined with UA or albumin. Rat bronchoalveolar lavage fluid (BALF) also induced RCM oxidation. However, in vivo O3 exposure dampened the extent of BALF-mediated RCM oxidation. Although we cannot completely rule out O3 diffusion to the RCM, product(s) derived from O3 + AH2/GSH reactions (possibly O3*- or 1O2) likely initiated RCM oxidation and may suggest that in vivo, such secondary species account for O3 permeation through the ELF leading to cellular perturbations.


Assuntos
Antioxidantes/metabolismo , Membrana Eritrocítica/efeitos dos fármacos , Membrana Eritrocítica/metabolismo , Ozônio/farmacologia , Acetilcolinesterase/metabolismo , Aldeídos/metabolismo , Animais , Ácido Ascórbico/farmacologia , Cromanos/metabolismo , Glutationa/metabolismo , Humanos , L-Lactato Desidrogenase/metabolismo , Masculino , Oxirredução/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Ácido Úrico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA