Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731907

RESUMO

Linoleic acid (LA), an n-6 polyunsaturated fatty acid (PUFA), is obtained from the maternal diet during pregnancy, and is essential for normal fetal growth and development. A maternal high-LA (HLA) diet alters maternal and offspring fatty acids, maternal leptin and male/female ratio at embryonic (E) day 20 (E20). We investigated the effects of an HLA diet on embryonic offspring renal branching morphogenesis, leptin signalling, megalin signalling and angiogenesis gene expression. Female Wistar Kyoto rats were fed low-LA (LLA; 1.44% energy from LA) or high-LA (HLA; 6.21% energy from LA) diets during pregnancy and gestation/lactation. Offspring were sacrificed and mRNA from kidneys was analysed by real-time PCR. Maternal HLA decreased the targets involved in branching morphogenesis Ret and Gdnf in offspring, independent of sex. Furthermore, downstream targets of megalin, namely mTOR, Akt3 and Prkab2, were reduced in offspring from mothers consuming an HLA diet, independent of sex. There was a trend of an increase in the branching morphogenesis target Gfra1 in females (p = 0.0517). These findings suggest that an HLA diet during pregnancy may lead to altered renal function in offspring. Future research should investigate the effects an HLA diet has on offspring kidney function in adolescence and adulthood.


Assuntos
Rim , Ácido Linoleico , Morfogênese , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Animais , Feminino , Gravidez , Serina-Treonina Quinases TOR/metabolismo , Rim/metabolismo , Rim/efeitos dos fármacos , Ratos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Morfogênese/efeitos dos fármacos , Morfogênese/genética , Ácido Linoleico/metabolismo , Masculino , Ratos Endogâmicos WKY , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Feto/metabolismo , Feto/efeitos dos fármacos
2.
Int J Mol Sci ; 25(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38256199

RESUMO

Linoleic acid (LA), an n-6 polyunsaturated fatty acid (PUFA), is essential for fetal growth and development. A maternal high LA (HLA) diet alters cardiovascular development in adolescent rats and hepatic function in adult rats in a sex-specific manner. We investigated the effects of an HLA diet on adolescent offspring hepatic lipids and hepatic lipid metabolism gene expression, and the ability of the postnatal diet to alter these effects. Female Wistar Kyoto rats were fed low LA (LLA; 1.44% energy from LA) or high LA (HLA; 6.21% energy from LA) diets during pregnancy and gestation/lactation. Offspring, weaned at postnatal day (PN) 25, were fed LLA or HLA and euthanised at PN40 (n = 6-8). Maternal HLA increased circulating uric acid, decreased hepatic cholesterol and increased hepatic Pparg in males, whereas only hepatic Srebf1 and Hmgcr increased in females. Postnatal (post-weaning) HLA decreased liver weight (% body weight) and increased hepatic Hmgcr in males, and decreased hepatic triglycerides in females. Maternal and postnatal HLA had an interaction effect on Lpl, Cpt1a and Pparg in females. These findings suggest that an HLA diet both during and after pregnancy should be avoided to improve offspring disease risk.


Assuntos
Ácido Linoleico , Metabolismo dos Lipídeos , Feminino , Masculino , Gravidez , Ratos , Animais , PPAR gama , Dieta , Fígado , Ratos Endogâmicos WKY , Ácidos Graxos Ômega-6
3.
J Physiol ; 601(6): 1061-1075, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36755527

RESUMO

Prenatal alcohol consumption (PAE) may be associated with a broad spectrum of impacts, ranging from no overt effects, to miscarriage, fetal growth restriction and fetal alcohol spectrum disorder. A major mechanism underlying the effects of PAE is considered to be altered DNA methylation and gene expression. Maternal nutritional status may be an important factor in determining the extent to which PAE impacts pregnancy outcomes, particularly the dietary micronutrients folate and choline because they provide methyl groups for DNA methylation via one carbon metabolism. This review summarises the roles of folate and choline in development of the blastocyst, the placenta and the fetal brain, and examines the evidence that maternal intake of these micronutrients can modify the effects of PAE on development. Studies of folate or choline deficiency have found reduced blastocyst development and implantation, reduced placental invasion, vascularisation and nutrient transport capability, impaired fetal brain development, and abnormal neurodevelopmental outcomes. PAE has been shown to reduce absorption and/or metabolism of folate and choline and to produce similar outcomes to maternal choline/folate deficiency. A few studies have demonstrated that the effects of PAE on brain development can be ameliorated by folate or choline supplementation; however, there is very limited evidence on the effects of supplementation in early pregnancy on the blastocyst and placenta. Further studies are required to support these findings and to determine optimal supplementation parameters.


Assuntos
Ácido Fólico , Efeitos Tardios da Exposição Pré-Natal , Humanos , Feminino , Gravidez , Ácido Fólico/metabolismo , Colina/metabolismo , Colina/farmacologia , Placenta/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Desenvolvimento Fetal , Troca Materno-Fetal , Micronutrientes/metabolismo , Carbono/metabolismo
4.
J Nutr ; 152(3): 714-722, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-34625812

RESUMO

BACKGROUND: Many women enter pregnancy with iron stores that are insufficient to maintain maternal iron balance and support fetal development and consequently, often require iron supplements. However, the side effects associated with many currently available iron supplements can limit compliance. OBJECTIVE: This study aimed to test the safety and efficacy of a novel nanoparticulate iron supplement, a dietary ferritin analog termed iron hydroxide adipate tartrate (IHAT), in pregnant mice. METHODS: Female C57BL/6 mice were maintained on either an iron-deficient or a control diet for 2 wk prior to timed mating to develop iron-deficient or iron-sufficient pregnancy models, respectively. Mice from each model were then gavaged daily with 10 mg iron/kg body weight as either IHAT or ferrous sulfate, or with water only, beginning on embryonic day (E) 4.5. Mice were killed on E18.5 and maternal iron and hematological parameters were measured. The expression of genes encoding iron transporters and oxidative stress markers in the duodenum and placenta were determined, along with hepatic expression of the gene encoding the iron regulatory hormone hepcidin and fetal iron. RESULTS: Oral IHAT and ferrous sulfate were equally effective at increasing maternal hemoglobin (20.2% and 16.9%, respectively) and hepatic iron (30.2% and 29.3%, respectively), as well as total fetal iron (99.7% and 83.8%, respectively), in iron-deficient pregnant mice compared with those gavaged with water only, with no change in oxidative stress markers seen with either treatment. However, there was a significant increase in the placental expression of the oxidative stress marker heme oxygenase 1 in iron-replete pregnant mice treated with ferrous sulfate when compared with iron-replete pregnant mice gavaged with IHAT (96.9%, P <0.05). CONCLUSIONS: IHAT has proved a safe and effective alternative to oral ferrous sulfate in mice, and it has potential for treating iron deficiency in human pregnancy.


Assuntos
Anemia Ferropriva , Deficiências de Ferro , Anemia Ferropriva/tratamento farmacológico , Animais , Feminino , Ferritinas/uso terapêutico , Compostos Ferrosos/uso terapêutico , Hemoglobinas/análise , Humanos , Ferro , Camundongos , Camundongos Endogâmicos C57BL , Placenta/química , Gravidez , Água
5.
Br J Nutr ; 127(4): 540-553, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-33858529

RESUMO

Linoleic acid (LA), an essential n-6 fatty acid (FA), is critical for fetal development. We investigated the effects of maternal high LA (HLA) diet on offspring cardiac development and its relationship to circulating FA and cardiovascular function in adolescent offspring, and the ability of the postnatal diet to reverse any adverse effects. Female Wistar Kyoto rats were fed low LA (LLA; 1·44 % energy from LA) or high LA (HLA; 6·21 % energy from LA) diets for 10 weeks before pregnancy and during gestation/lactation. Offspring, weaned at postnatal day 25, were fed LLA or HLA diets and euthanised at postnatal day 40 (n 6-8). Maternal HLA diet decreased circulating total cholesterol and HDL-cholesterol in females and decreased total plasma n-3 FA in males, while maternal and postnatal HLA diets decreased total plasma n-3 FA in females. α-Linolenic acid (ALA) and EPA were decreased by postnatal but not maternal HLA diets in both sexes. Maternal and postnatal HLA diets increased total plasma n-6 and LA, and a maternal HLA diet increased circulating leptin, in both male and female offspring. Maternal HLA decreased slopes of systolic and diastolic pressure-volume relationship (PVR), and increased cardiac Col1a1, Col3a1, Atp2a1 and Notch1 in males. Maternal and postnatal HLA diets left-shifted the diastolic PVR in female offspring. Coronary reactivity was altered in females, with differential effects on flow repayment after occlusion. Thus, maternal HLA diets impact lipids, FA and cardiac function in offspring, with postnatal diet modifying FA and cardiac function in the female offspring.


Assuntos
Ácidos Graxos , Ácido Linoleico , Adolescente , Animais , Colesterol , Dieta , Ácidos Graxos Essenciais , Feminino , Humanos , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Gravidez , Ratos , Ratos Endogâmicos WKY
6.
J Physiol ; 599(4): 1291-1305, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33135816

RESUMO

KEY POINTS: Mitochondrial dysfunction is known to occur in diabetic phenotypes including type 1 and 2 diabetes mellitus. The incidence of gestational diabetes mellitus (GDM) is increasing and defined as the onset of a diabetic phenotype during pregnancy. The role of placental mitochondria in the aetiology of GDM remains unclear and is an emerging area of research. Differing mitochondrial morphologies within the placenta may influence the pathogenesis of the disorder. This study observed mitochondrial dysfunction in GDM placenta when assessing whole tissue. Upon further investigation into mitochondrial isolates from the cytotrophoblast and syncytiotrophoblast, mitochondrial dysfunction appears exaggerated in syncytiotrophoblast. Assessing mitochondrial populations individually enabled the determination of differences between cell lineages of the placenta and established varying levels of mitochondrial dysfunction in GDM, in some instances establishing significance in pathways previously inconclusive or confounded when assessing whole tissue. This research lays the foundation for future work into mitochondrial dysfunction in the placenta and the role it may play in the aetiology of GDM. ABSTRACT: Mitochondrial dysfunction has been associated with diabetic phenotypes, yet the involvement of placental mitochondria in gestational diabetes mellitus (GDM) remains inconclusive. This is in part complicated by the different mitochondrial subpopulations present in the two major trophoblast cell lineages of the placenta. To better elucidate the role of mitochondria in this pathology, this study examined key aspects of mitochondrial function in placentas from healthy pregnancies and those complicated by GDM in both whole tissue and isolated mitochondria. Mitochondrial content, citrate synthase activity, reactive oxygen species production and gene expression regulating metabolic, hormonal and antioxidant control was examined in placental tissue, before examining functional differences between mitochondrial isolates from cytotrophoblast (Cyto-Mito) and syncytiotrophoblast (Syncytio-Mito). Our study observed evidence of mitochondrial dysfunction across multiple pathways when assessing whole placental tissue from GDM pregnancies compared with healthy controls. Furthermore, by examining isolated mitochondria from the cytotrophoblast and syncytiotrophoblast cell lineages of the placenta we established that although both mitochondrial populations were dysfunctional, they were differentially impacted. These data highlight the need to consider changes in mitochondrial subpopulations at the feto-maternal interface when studying pregnancy pathologies.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Diabetes Gestacional , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Gestacional/metabolismo , Feminino , Humanos , Mitocôndrias , Placenta/metabolismo , Gravidez , Trofoblastos/metabolismo
7.
J Nutr ; 151(9): 2541-2550, 2021 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-34114013

RESUMO

BACKGROUND: The ferroxidase zyklopen (Zp) has been implicated in the placental transfer of iron to the fetus. However, the evidence for this is largely circumstantial. OBJECTIVES: This study aimed to determine whether Zp is essential for placental iron transfer. METHODS: A model was established using 8- to 12-wk-old pregnant C57BL/6 mice on standard rodent chow in which Zp was knocked out in the fetus and fetal components of the placenta. Zp was also disrupted in the entire placenta using global Zp knockout mice. Inductively coupled plasma MS was used to measure total fetal iron, an indicator of the amount of iron transferred by the placenta to the fetus, at embryonic day 18.5 of gestation. Iron transporter expression in the placenta was measured by Western blotting, and the expression of Hamp1, the gene encoding the iron regulatory hormone hepcidin, was determined in fetal liver by real-time PCR. RESULTS: There was no change in the amount of iron transferred to the fetus when Zp was disrupted in either the fetal component of the placenta or the entire placenta. No compensatory changes in the expression of the iron transport proteins transferrin receptor 1 or ferroportin were observed, nor was there any change in fetal liver Hamp1 mRNA. Hephl1, the gene encoding Zp, was expressed mainly in the maternal decidua of the placenta and not in the nutrient-transporting syncytiotrophoblast. Disruption of Zp in the whole placenta resulted in a 26% increase in placental size (P < 0.01). CONCLUSIONS: Our data indicate that Zp is not essential for the efficient transfer of iron to the fetus in mice and is localized predominantly in the maternal decidua. The increase in placental size observed when Zp is knocked out in the entire placenta suggests that this protein may play a role in placental development.


Assuntos
Ceruloplasmina , Placenta , Animais , Ceruloplasmina/genética , Feminino , Feto/metabolismo , Ferro/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Placenta/metabolismo , Placentação , Gravidez
8.
Int J Mol Sci ; 22(12)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203717

RESUMO

It is well understood that sex differences exist between females and males even before they are born. These sex-dependent differences may contribute to altered growth and developmental outcomes for the fetus. Based on our initial observations in the human placenta, we hypothesised that the male prioritises growth pathways in order to maximise growth through to adulthood, thereby ensuring the greatest chance of reproductive success. However, this male-specific "evolutionary advantage" likely contributes to males being less adaptable to shifts in the in-utero environment, which then places them at a greater risk for intrauterine morbidities or mortality. Comparatively, females are more adaptable to changes in the in-utero environment at the cost of growth, which may reduce their risk of poor perinatal outcomes. The mechanisms that drive these sex-specific adaptations to a change in the in-utero environment remain unclear, but an increasing body of evidence within the field of developmental biology would suggest that alterations to placental function, as well as the feto-placental hormonal milieu, is an important contributing factor. Herein, we have addressed the current knowledge regarding sex-specific intrauterine growth differences and have examined how certain pregnancy complications may alter these female- and male-specific adaptations.


Assuntos
Desenvolvimento Embrionário , Desenvolvimento Fetal/fisiologia , Placenta/fisiologia , Caracteres Sexuais , Androgênios/metabolismo , Animais , Feminino , Glucocorticoides/metabolismo , Humanos , Masculino , Gravidez
9.
Int J Mol Sci ; 22(19)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34638563

RESUMO

BACKGROUND: Linoleic acid (LA) is an essential polyunsaturated fatty acid (PUFA) that is required for foetal growth and development. Excess intake of LA can be detrimental for metabolic health due to its pro-inflammatory properties; however, the effect of a diet high in LA on offspring metabolites is unknown. In this study, we aimed to determine the role of maternal or postnatal high linoleic acid (HLA) diet on plasma metabolites in adult offspring. METHODS: Female Wistar Kyoto (WKY) rats were fed with either low LA (LLA) or HLA diet for 10 weeks prior to conception and during gestation/lactation. Offspring were weaned at postnatal day 25 (PN25), treated with either LLA or HLA diets and sacrificed at PN180. Metabolite analysis was performed in plasma samples using Nuclear Magnetic Resonance. RESULTS: Maternal and postnatal HLA diet did not alter plasma metabolites in male and female adult offspring. There was no specific clustering among different treatment groups as demonstrated by principal component analysis. Interestingly, there was clustering among male and female offspring independent of maternal and postnatal dietary intervention. Lysine was higher in female offspring, while 3-hydroxybutyric acid and acetic acid were significantly higher in male offspring. CONCLUSION: In summary, maternal or postnatal HLA diet did not alter the plasma metabolites in the adult rat offspring; however, differences in metabolites between male and female offspring occurred independently of dietary intervention.


Assuntos
Ácido 3-Hidroxibutírico/sangue , Ácido Acético/sangue , Ácido Linoleico/administração & dosagem , Lisina/sangue , Filhos Adultos , Animais , Animais Recém-Nascidos , Dieta , Dieta Hiperlipídica , Feminino , Lactação , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Plasma/química , Plasma/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/sangue , Análise de Componente Principal , Curva ROC , Ratos Endogâmicos WKY , Caracteres Sexuais
10.
Int J Mol Sci ; 22(6)2021 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-33799409

RESUMO

Linoleic acid (LA), an n-6 polyunsaturated fatty acid (PUFA), is essential for fetal growth and development. We aimed to investigate the effect of maternal and postnatal high LA (HLA) diet on plasma FA composition, plasma and hepatic lipids and genes involved in lipid metabolism in the liver of adult offspring. Female rats were fed with low LA (LLA; 1.44% LA) or HLA (6.21% LA) diets for 10 weeks before pregnancy, and during gestation/lactation. Offspring were weaned at postnatal day 25 (PN25), fed either LLA or HLA diets and sacrificed at PN180. Postnatal HLA diet decreased circulating total n-3 PUFA and alpha-linolenic acid (ALA), while increased total n-6 PUFA, LA and arachidonic acid (AA) in both male and female offspring. Maternal HLA diet increased circulating leptin in female offspring, but not in males. Maternal HLA diet decreased circulating adiponectin in males. Postnatal HLA diet significantly decreased aspartate transaminase (AST) in females and downregulated total cholesterol, HDL-cholesterol and triglycerides in the plasma of males. Maternal HLA diet downregulated the hepatic mRNA expression of Hmgcr in both male and female offspring and decreased the hepatic mRNA expression of Cpt1a and Acox1 in females. Both maternal and postnatal HLA diet decreased hepatic mRNA expression of Cyp27a1 in females. Postnatal diet significantly altered circulating fatty acid concentrations, with sex-specific differences in genes that control lipid metabolism in the adult offspring following exposure to high LA diet in utero.


Assuntos
Ácidos Graxos Ômega-6/metabolismo , Leptina/genética , Ácido Linoleico/metabolismo , Fígado/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos Ômega-6/farmacologia , Feminino , Humanos , Lactação/efeitos dos fármacos , Lactação/genética , Leptina/metabolismo , Ácido Linoleico/farmacologia , Metabolismo dos Lipídeos/genética , Fígado/efeitos dos fármacos , Masculino , Fenômenos Fisiológicos da Nutrição Materna/genética , Gravidez , Ratos , Caracteres Sexuais , Triglicerídeos/sangue
11.
Am J Physiol Endocrinol Metab ; 319(6): E981-E994, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32954826

RESUMO

Mitochondria play a key role in homeostasis and are central to one of the leading hypotheses of aging, the free radical theory. Mitochondria function as a reticulated network, constantly adapting to the cellular environment through fusion (joining), biogenesis (formation of new mitochondria), and fission (separation). This adaptive response is particularly important in response to oxidative stress, cellular damage, and aging, when mitochondria are selectively removed through mitophagy, a mitochondrial equivalent of autophagy. During this complex process, mitochondria influence surrounding cell biology and organelles through the release of signaling molecules. Given that the human placenta is a unique organ having a transient and somewhat defined life span of ∼280 days, any adaption or dysfunction associated with mitochondrial physiology as a result of aging will have a dramatic impact on the health and function of both the placenta and the fetus. Additionally, a defective placenta during gestation, resulting in reduced fetal growth, has been shown to influence the development of chronic disease in later life. In this review we focus on the mitochondrial adaptions and transformations that accompany gestational length and share similarities with age-related diseases. In addition, we discuss the role of such changes in regulating placental function throughout gestation, the etiology of gestational complications, and the development of chronic diseases later in life.


Assuntos
Envelhecimento/fisiologia , Mitocôndrias/fisiologia , Dinâmica Mitocondrial/fisiologia , Placenta/fisiologia , Animais , Feminino , Humanos , Mitocôndrias/patologia , Mitofagia/fisiologia , Estresse Oxidativo/fisiologia , Placenta/citologia , Placenta/ultraestrutura , Gravidez , Transdução de Sinais/fisiologia
12.
Am J Physiol Endocrinol Metab ; 318(2): E276-E285, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31846371

RESUMO

Dietary intakes of linoleic acid (LA) have increased, including in women of reproductive age. Changes in maternal gut microbiome have been implicated in the metabolic adaptions that occur during pregnancy. We aimed to investigate whether consumption of a diet with elevated LA altered fecal microbiome diversity before and during pregnancy. Female Wistar-Kyoto rats consumed a high-LA diet (HLA: 6.21% of energy) or a low-LA diet (LLA: 1.44% of energy) for 10 wk before mating and during pregnancy. DNA was isolated from fecal samples before pregnancy [embryonic day 0 (E0)], or during pregnancy at E10 and E20. The microbiome composition was assessed with 16S rRNA sequencing. At E0, the beta-diversity of LLA and HLA groups differed with HLA rats having significantly lower abundance of the genera Akkermansia, Peptococcus, Sutterella, and Xo2d06 but higher abundance of Butyricimonas and Coprococcus. Over gestation, in LLA but not HLA rats, there was a reduction in alpha-diversity and an increase in beta-diversity. In the LLA group, the abundance of Akkermansia, Blautia, rc4.4, and Streptococcus decreased over gestation, whereas Coprococcus increased. In the HLA group; only the abundance of Butyricimonas decreased. At E20, there were no differences in alpha- and beta-diversity, and the abundance of Roseburia was significantly increased in the HLA group. In conclusion, consumption of a HLA diet alters gut microbiota composition, as does pregnancy in rats consuming a LLA diet. In pregnancy, consumption of a HLA diet does not alter gut microbiota composition.


Assuntos
Dieta , Microbioma Gastrointestinal/fisiologia , Ácido Linoleico/farmacologia , Adulto , Animais , Peso Corporal , Dieta Hiperlipídica , Fezes/microbiologia , Feminino , Humanos , Gravidez , RNA Ribossômico 16S , Ratos , Ratos Endogâmicos WKY
13.
Clin Exp Pharmacol Physiol ; 47(5): 907-915, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31883131

RESUMO

Maternal nutrition plays a critical role in fetal development and can influence adult onset of disease. Linoleic acid (LA) and alpha-linolenic acid (ALA) are major omega-6 (n-6) and n-3 polyunsaturated fatty acids (PUFA), respectively, that are essential in our diet. LA and ALA are critical for the development of the fetal neurological and immune systems. However, in recent years, the consumption of n-6 PUFA has increased gradually worldwide, and elevated n-6 PUFA consumption may be harmful to human health. Consumption of diets with high levels of n-6 PUFA before or during pregnancy may have detrimental effects on fetal development and may influence overall health of offspring in adulthood. This review discusses the role of n-6 PUFA in fetal programming, the importance of a balance between n-6 and n-3 PUFAs in the maternal diet, and the need of further animal models and human studies that critically evaluate both n-6 and n-3 PUFA contents in diets.


Assuntos
Ácidos Graxos Ômega-3/efeitos adversos , Ácidos Graxos Ômega-6/efeitos adversos , Desenvolvimento Fetal/efeitos dos fármacos , Fenômenos Fisiológicos da Nutrição Materna , Efeitos Tardios da Exposição Pré-Natal , Animais , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Feminino , Idade Gestacional , Humanos , Masculino , Troca Materno-Fetal , Estado Nutricional , Placenta/metabolismo , Gravidez , Medição de Risco , Fatores de Risco , Razão de Masculinidade
14.
Int J Mol Sci ; 21(6)2020 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-32210049

RESUMO

The human selenoproteome is comprised of ~25 genes, which incorporate selenium, in the form of selenocysteine, into their structure. Since it is well known that selenium is important to maternal health and foetal development during pregnancy, this study aimed at defining the impact of selenium deficiency on maternal, placental, foetal and offspring selenoprotein gene expression. Female C57BL/6 mice were randomly allocated to control (>190 µg/kg) or low selenium (<50 µg/kg) diets four weeks prior to mating and throughout gestation. At embryonic day (E)18.5, pregnant mice were sacrificed followed by collection of maternal and foetal tissues. A subset of mice littered down, and offspring were monitored from postnatal day (PN) 8, weaned at PN24 and sacrificed at PN180, followed by tissue collection. Following RNA extraction, the expression of 14 selenoproteins was assessed with qPCR in liver, kidneys, muscle and placenta. Selenium deficiency downregulated expression (Ptrt < 0.05) of many selenoproteins in maternal tissues and the placenta. However, foetal selenoprotein expression was upregulated (Ptrt < 0.05) in all tissues, especially the kidneys. This was not reflected at PN180; however, a sexually dimorphic relationship in selenoprotein expression was observed in offspring. This study demonstrates the selenoproteome is sensitive to dietary selenium levels, which may be exacerbated by pregnancy. We concluded that transcriptional regulation of selenoproteins is complex and multifaceted, with expression exhibiting tissue-, age- and sex-specificities.


Assuntos
Dieta , Feto , Regulação da Expressão Gênica , Mães , Selênio/deficiência , Selenoproteínas/genética , Animais , Biomarcadores , Feminino , Masculino , Camundongos , Especificidade de Órgãos/genética , Placenta/metabolismo , Gravidez , Fatores Sexuais
15.
J Physiol ; 597(12): 3053-3067, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31026055

RESUMO

KEY POINTS: Maternal exposure to the stress hormone corticosterone is known to programme a range of sex specific disease outcomes in offspring. Sex differences in placental adaptations are thought to mediate these processes. Placental oxidative stress is implicated in a range of pregnancy disorders but the role of placental oxidative stress in sex specific disease outcomes following prenatal corticosterone exposure is unknown. This study demonstrates that maternal corticosterone reduced placental hydrogen peroxide and 8-hydroxy-2'-deoxyguanosine concentrations but increased protein carbonyl content and advanced glycation end product concentrations in placentas of female fetuses but not male fetuses. These results highlight that placentas of female fetuses respond differently to maternal corticosterone exposure, with oxidative stress a major finding in placentas of female fetuses. ABSTRACT: Maternal exposure to glucocorticoids during pregnancy increases offspring risk of developing a range of sex specific disease phenotypes. These sex specific disease outcomes are thought to be in part mediated by different placental adaptations in males and females. The placenta is a highly metabolic organ which is vulnerable to the effects of oxidative stress. In other tissues, males and females have been shown to respond differently to the pro-oxidant effects of glucocorticoids. This study therefore used a well characterized animal model of maternal corticosterone exposure to investigate sex specific alterations in reactive oxygen species production, antioxidant concentrations and mitochondrial properties that might contribute to sex differences in placental outcomes. C57BL/6 mice were implanted with osmotic minipumps containing corticosterone (33 µg kg-1  h-1 ) at embryonic day (E) 12.5 and placentas collected at E14.5 for analysis. Corticosterone exposure reduced placental hydrogen peroxide (H2 O2 ) and 8-hydroxy-2'-deoxyguanosine concentrations but increased protein carbonyl content and advanced glycation end product concentrations in placentas of female fetuses but not male fetuses. This dysregulation of different markers of oxidative stress may be due to increased placental activity of thioredoxin reductase in female but not male fetuses. Corticosterone reduced placental mitochondrial content but increased protein expression of the autophagosome cargo protein p62. This study demonstrates that placentas of female fetuses respond differently to maternal corticosterone exposure and highlights an important role of reactive oxygen species, mitochondrial adaptations and antioxidant responses in glucocorticoid induced programmed disease.


Assuntos
Corticosterona/fisiologia , Feto/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo , Placenta/metabolismo , Caracteres Sexuais , Animais , Feminino , Masculino , Camundongos Endogâmicos C57BL , Gravidez , Espécies Reativas de Oxigênio/metabolismo , Tiorredoxina Dissulfeto Redutase/metabolismo
16.
J Physiol ; 597(23): 5597-5617, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31562642

RESUMO

KEY POINTS: Inappropriate intake of key micronutrients in pregnancy is known to alter maternal endocrine status, impair placental development and induce fetal growth restriction. Selenium is an essential micronutrient required for the function of approximately 25 important proteins. However, the specific effects of selenium deficiency during pregnancy on maternal, placental and fetal outcomes are poorly understood. The present study demonstrates that maternal selenium deficiency increases maternal triiodothyronine and tetraiodothyronine concentrations, reduces fetal blood glucose concentrations, and induces fetal growth restriction. Placental expression of key selenium-dependent thyroid hormone converting enzymes were reduced, whereas the expression of key placental nutrient transporters was dysregulated. Selenium deficiency had minimal impact on selenium-dependent anti-oxidants but increased placental copper concentrations and expression of superoxide dismutase 1. These results highlight the idea that selenium deficiency during pregnancy may contribute to thyroid dysfunction, causing reduced fetal growth, that may precede programmed disease outcomes in offspring. ABSTRACT: Selenium is a trace element fundamental to diverse homeostatic processes, including anti-oxidant regulation and thyroid hormone metabolism. Selenium deficiency in pregnancy is common and increases the risk of pregnancy complications including fetal growth restriction. Although altered placental formation may contribute to these poor outcomes, the mechanism by which selenium deficiency contributes to complications in pregnancy is poorly understood. Female C57BL/6 mice were randomly allocated to control (>190 µg kg-1 , n = 8) or low selenium (<50 µg kg-1 , n = 8) diets 4 weeks prior to mating and throughout gestation. Pregnant mice were killed at embryonic day 18.5 followed by collection of maternal and fetal tissue. Maternal and fetal plasma thyroid hormone concentrations were analysed, as was placental expression of key selenoproteins involved in thyroid metabolism and anti-oxidant defences. Selenium deficiency increased plasma tetraiodothyronine and triiodothyronine concentrations. This was associated with a reduction in placental expression of key selenodependent deiodinases, DIO2 and DIO3. Placental expression of selenium-dependent anti-oxidants was unaffected by selenium deficiency. Selenium deficiency reduced fetal glucose concentrations, leading to reduced fetal weight. Placental glycogen content was increased within the placenta, as was Slc2a3 mRNA expression. This is the first study to demonstrate that selenium deficiency may reduce fetal weight through increased maternal thyroid hormone concentrations, impaired placental thyroid hormone metabolism and dysregulated placental nutrient transporter expression. The study suggests that the magnitude of selenium deficiency commonly reported in pregnant women may be sufficient to impair thyroid metabolism but not placental anti-oxidant concentrations.


Assuntos
Desenvolvimento Fetal , Placenta/metabolismo , Selênio/deficiência , Hormônios Tireóideos/metabolismo , Animais , Cobre/metabolismo , Feminino , Iodeto Peroxidase/genética , Fígado/embriologia , Fígado/metabolismo , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Camundongos Endogâmicos C57BL , Gravidez , Iodotironina Desiodinase Tipo II
17.
J Physiol ; 597(13): 3349-3361, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31124126

RESUMO

KEY POINTS: Linoleic acid consumption is increasing in Western populations. We investigated whether elevated linoleic acid in pregnancy was deleterious to mothers or offspring. Maternal and fetal body and organ weights were not affected by elevated linoleic acid consumption. Maternal lipids and leptin were altered following elevated linoleic acid consumption. Male offspring numbers were reduced following elevated linoleic acid consumption. ABSTRACT: Dietary intakes of linoleic acid (LA) have increased dramatically in Western populations, including in women of reproductive age. Pro-inflammatory effects of LA may have detrimental effects on maternal and offspring outcomes. We aimed to investigate whether consumption of a maternal diet with elevated LA altered maternal inflammatory or metabolic markers during pregnancy, fetal growth and/or the sex ratio of the offspring. Female Wistar Kyoto rats consumed a diet high in LA (HLA) (6.21% of energy) or a diet low in LA (LLA) (1.44% of energy) for 10 weeks prior to mating and during pregnancy. Pregnant rats were killed at embryonic day 20 (E20). There were no differences in maternal or fetal body weights or organ weights in the HLA group compared to the LLA group. There was no difference in maternal circulating cytokine concentrations between dietary groups. In the maternal liver, IL-1α concentrations were significantly lower, and TNF-α and IL-7 significantly higher in the HLA group. Total plasma cholesterol, LDL-cholesterol, HDL cholesterol and the total:HDL cholesterol ratio were lower in dams fed the HLA diet. mRNA expression of sterol regulatory element binding transcription factor 1 (SREBF-1) and leptin in maternal adipose tissue was lower in the HLA group, as were circulating leptin concentrations. The proportion of male fetuses was lower and circulating prostaglandin E metabolite concentrations were increased in the HLA group. In conclusion, consumption of a maternal diet high in linoleic acid alters cholesterol metabolism and prostaglandin E metabolite concentrations, which may contribute to the reduced proportion of male offspring.


Assuntos
Colesterol/sangue , Feto/efeitos dos fármacos , Leptina/sangue , Ácido Linoleico/administração & dosagem , Tecido Adiposo/metabolismo , Animais , Biomarcadores/sangue , Peso Corporal/efeitos dos fármacos , Dieta , Feminino , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Modelos Animais , Tamanho do Órgão/efeitos dos fármacos , Gravidez , Ratos , Ratos Endogâmicos WKY
18.
J Physiol ; 597(7): 1905-1918, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30734290

RESUMO

KEY POINTS: Fetal growth is dependent on effective placental nutrient transportation, which is regulated by mammalian target of rapamycin (mTOR) complex 1 modulation of nutrient transporter expression. These transporters are dysregulated in pregnancies affected by uteroplacental insufficiency and maternal obesity. Nutrient transporters and mTOR were altered in placentae of mothers born growth restricted compared to normal birth weight dams, with maternal diet- and fetal sex-specific responses. Exercise initiated during pregnancy downregulated mTOR protein expression, despite an increase in mTOR activation in male associated placentae, and reduced nutrient transporter gene abundance, which was also dependent on maternal diet and fetal sex. Limited changes were characterized with exercise initiated before and continued throughout pregnancy in nutrient transporter and mTOR expression. Maternal exercise during pregnancy differentially regulated mTOR and nutrient transporters in a diet- and sex-specific manner, which likely aimed to improve late gestational placental growth and neonatal survival. ABSTRACT: Adequate transplacental nutrient delivery is essential for fetoplacental development. Intrauterine growth restriction and maternal obesity independently alter placental nutrient transporter expression. Although exercise is beneficial for maternal health, limited studies have characterized how the timing of exercise initiation influences placental nutrient transport. Therefore, this study investigated the impact of maternal exercise on placental mechanistic target of rapamycin (mTOR) and nutrient transporter expression in growth restricted mothers and whether these outcomes were dependent on maternal diet or fetal sex. Uteroplacental insufficiency or sham surgery was induced on embryonic day (E) 18 in Wistar-Kyoto rats. F1 offspring were fed a chow or high-fat diet from weaning and at 16 weeks were randomly allocated to an exercise protocol: sedentary, exercised prior to and during pregnancy, or exercised during pregnancy only. Females were mated with normal males (20 weeks) and F2 placentae collected at E20. Exercise during pregnancy only, reduced mTOR protein expression in all groups and increased mTOR activation in male associated placentae. Exercise during pregnancy only, decreased the expression of amino acid transporters in a diet- and sex-specific manner. Maternal growth restriction altered mTOR and system A amino acid transporter expression in a sex- and diet-specific manner. These data highlight that maternal exercise initiated during pregnancy alters placental mTOR expression, which may directly regulate amino acid transporter expression, to a greater extent than exercise initiated prior to and continued during pregnancy, in a diet- and fetal sex-dependent manner. These findings highlight that the timing of exercise initiation is important for optimal placental function.


Assuntos
Proteínas de Transporte/metabolismo , Retardo do Crescimento Fetal , Atividade Motora/fisiologia , Placenta/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Sistema A de Transporte de Aminoácidos/genética , Sistema A de Transporte de Aminoácidos/metabolismo , Animais , Feminino , Regulação da Expressão Gênica , Masculino , Gravidez , Ratos , Ratos Wistar , Fatores Sexuais
19.
Cell Physiol Biochem ; 52(1): 94-108, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30790507

RESUMO

BACKGROUND/AIMS: The omega 6 fatty acid (FA) linoleic acid (LA) is required for embryonic development; however, omega 6 FAs can alter cellular metabolism via inflammation or modulation of mitochondrial function. Fetal LA is obtained from the maternal diet, and FAs are transported to the fetus via placental FA transporters (FATPs) and binding proteins (FABPs), but specific proteins responsible for LA transport in placental trophoblasts are unknown. Dietary LA consumption is increasing, but the effect of elevated LA on trophoblast function is not clear. METHODS: Swan71 trophoblasts were exposed to physiological and supraphysiological concentrations of LA for 24 hours. Quantification of mRNA was determined using real time PCR, and protein concentration was determined by Western blot analysis. Cell viability, citrate synthase activity and mitochondrial respiration were determined. RESULTS: Exposure to 300 and 500 µM LA increased FATP1 and FATP4 mRNA expression. 500 µM LA increased FATP1 and FATP4 protein expression. Exposure to 500 µM increased FABP5 mRNA expression, while exposure to 100 to 500 µM LA decreased FABP3 mRNA expression. 300 and 500 µM LA decreased FABP3 protein expression. Cell viability was decreased by exposure to LA (100 to 1000 µM). Citrate synthase activity and routine mitochondrial respiration were significantly decreased by exposure to 300 and 500 µM LA, and maximal respiration and spare respiratory capacity were decreased by exposure to 100 to 500 µM LA. 300 and 500 µM LA increased reactive oxygen species generation in human trophoblasts. Moreover, exposure to 300 and 500 µM LA decreased IL-6 secretion. Exposure to 500 µM LA increased IL-8, NF-κB and PPAR-γ mRNA expression, but decreased NF-κB protein expression. 300 µM LA decreased IL-8 protein expression. Further, exposure to 100 to 500 µM LA increased prostaglandin E2 and leukotriene B4 release. CONCLUSION: Exposure to LA decreases cell viability, alters mRNA expression of FA transport related proteins, mitochondrial respiration and function, and inflammatory responses in trophoblasts. These findings may have implications on placental function when women consume high levels of LA.


Assuntos
Dinoprostona/metabolismo , Ácido Linoleico/farmacologia , Mitocôndrias/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Trofoblastos/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas Mitocondriais/biossíntese , Trofoblastos/citologia
20.
Stress ; 22(3): 347-357, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30741061

RESUMO

Ethanol consumption during pregnancy alters offspring hypothalamus-pituitary-adrenal (HPA) axis regulation. However, little is known about the outcomes of alcohol consumption confined to the periconceptional period. This study investigated the effects of periconceptional ethanol (PC:EtOH) exposure on corticosterone concentrations, response to restraint stress and gene expression of adrenal, hypothalamic, and hippocampal glucocorticoid-related pathways in rat offspring. Female Sprague-Dawley rats were treated with PC:EtOH (12.5% v/v EtOH liquid diet) or a control diet from four days before conception, until embryonic day 4. At 6 (adult) and 12-14 (aged) months of age, basal corticosterone concentrations were measured, while in a separate cohort of aged rats, blood pressure, heart rate, and plasma corticosterone concentrations were measured during a 30-minute restraint stress. Adrenal gland, hypothalamic and hippocampal tissue from aged rats were subjected to transcriptomic analysis. PC:EtOH exposure reduced basal plasma corticosterone concentrations in adult and aged female but not male offspring (p < .05). The corticosterone and pressor response were significantly reduced in aged PC:EtOH female offspring following restraint (p < .05). Expression of adrenal steroidogenesis genes (Mc2r, Cyp11a1, Cyp21a1, 11bhsd2, and Nr3c1) and hypothalamic genes (Crh, Crh-r1, Nr3c1, and Hsp90a1) was not affected by PC:EtOH. In aged female offspring exposed to PC:EtOH, adrenal mRNA expression of Hsp90a1 was significantly elevated, and within the hippocampus, mRNAs for glucocorticoid receptor (Nr3c1) and Hsp90a1 were increased (p < .05). This study supports the hypothesis that prenatal alcohol exposure programs sex-specific alterations in the HPA axis and provides the first evidence that the periconceptional period is a critical window for programing of this axis. Lay summary This study investigated the impact of alcohol consumption around the time of conception on offspring stress reactivity in a rat model. Offspring exposed to alcohol displayed altered cardiovascular responses to stress and had reduced circulating concentrations of the stress hormone corticosterone both under basal conditions and following a stressful challenge. This study also identified altered expression of key genes in an important part of the brain known to be involved in stress responsiveness; the hippocampus. If similar outcomes occur in humans, these results would suggest that alcohol consumption, even before a woman knows she is pregnant, may significantly impact stress-related outcomes in children.


Assuntos
Etanol/farmacologia , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Glândulas Suprarrenais/metabolismo , Consumo de Bebidas Alcoólicas , Animais , Corticosterona/sangue , Feminino , Expressão Gênica , Glucocorticoides/farmacologia , Hipocampo/metabolismo , Hipotálamo/metabolismo , Masculino , Sistema Hipófise-Suprarrenal/patologia , Gravidez , RNA Mensageiro , Ratos , Ratos Sprague-Dawley , Receptores de Glucocorticoides/metabolismo , Estresse Psicológico/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA