Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 280(10): 9283-90, 2005 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-15613474

RESUMO

Campylobacter jejuni, the leading cause of human gastroenteritis, expresses a ferric binding protein (cFbpA) that in many pathogenic bacteria functions to acquire iron as part of their virulence repertoire. Recombinant cFbpA is isolated with ferric iron bound from Escherichia coli. The crystal structure of cFbpA reveals unprecedented iron coordination by only five protein ligands. The histidine and one tyrosine are derived from the N-terminal domain, whereas the three remaining tyrosine ligands are from the C-terminal domain. Surprisingly, a synergistic anion present in all other characterized ferric transport proteins is not observed in the cFbpA iron-binding site, suggesting a novel role for this protein in iron uptake. Furthermore, cFbpA is shown to bind iron with high affinity similar to Neisserial FbpA and exhibits an unusual preference for ferrous iron (oxidized subsequently to the ferric form) or ferric iron chelated by oxalate. Sequence and structure analyses reveal that cFbpA is a member of a new class of ferric binding proteins that includes homologs from invasive and intracellular bacteria as well as cyanobacteria. Overall, six classes are defined based on clustering within the tree and by their putative iron coordination. The absence of a synergistic anion in the iron coordination sphere of cFbpA also suggests an alternative model of evolution for FbpA homologs involving an early iron-binding ancestor instead of a requirement for a preexisting anion-binding ancestor.


Assuntos
Proteínas de Bactérias/química , Campylobacter jejuni/metabolismo , Ferro/metabolismo , Proteínas Periplásmicas de Ligação/química , Sequência de Aminoácidos , Ânions/metabolismo , Proteínas de Bactérias/metabolismo , Sequência Conservada , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Periplásmicas de Ligação/metabolismo , Filogenia , Reação em Cadeia da Polimerase , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
2.
Biochem Cell Biol ; 83(6): 721-7, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16333323

RESUMO

The response of eukaryotic cells to DNA damage requires a multitude of protein-protein interactions that mediate the ordered repair of the damage and the arrest of the cell cycle until repair is complete. Two conserved protein modules, BRCT and forkhead-associated (FHA) domains, play key roles in the DNA-damage response as recognition elements for nuclear Ser/Thr phosphorylation induced by DNA-damage-responsive kinases. BRCT domains, first identified at the C-terminus of BRCA1, often occur as multiple tandem repeats of individual BRCT modules. Our recent structural and functional work has revealed how BRCT repeats recognize phosphoserine protein targets. It has also revealed a secondary binding pocket at the interface between tandem repeats, which recognizes the amino-acid 3 residues C-terminal to the phosphoserine. We have also studied the molecular function of the FHA domain of the DNA repair enzyme, polynucleotide kinase (PNK). This domain interacts with threonine-phosphorylated XRCC1 and XRCC4, proteins responsible for the recruitment of PNK to sites of DNA-strand-break repair. Our studies have revealed a flexible mode of recognition that allows PNK to interact with numerous negatively charged substrates.


Assuntos
Dano ao DNA , Reparo do DNA , Transdução de Sinais , Sequência de Aminoácidos , Animais , Proteína BRCA1/fisiologia , Ciclo Celular/fisiologia , Fatores de Transcrição Forkhead/fisiologia , Humanos , Dados de Sequência Molecular , Fosforilação , Homologia de Sequência de Aminoácidos
3.
Mol Cell ; 17(5): 657-70, 2005 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-15749016

RESUMO

Mammalian polynucleotide kinase (PNK) is a key component of both the base excision repair (BER) and nonhomologous end-joining (NHEJ) DNA repair pathways. PNK acts as a 5'-kinase/3'-phosphatase to create 5'-phosphate/3'-hydroxyl termini, which are a necessary prerequisite for ligation during repair. PNK is recruited to repair complexes through interactions between its N-terminal FHA domain and phosphorylated components of either pathway. Here, we describe the crystal structure of intact mammalian PNK and a structure of the PNK FHA bound to a cognate phosphopeptide. The kinase domain has a broad substrate binding pocket, which preferentially recognizes double-stranded substrates with recessed 5' termini. In contrast, the phosphatase domain efficiently dephosphorylates single-stranded 3'-phospho termini as well as double-stranded substrates. The FHA domain is linked to the kinase/phosphatase catalytic domain by a flexible tether, and it exhibits a mode of target selection based on electrostatic complementarity between the binding surface and the phosphothreonine peptide.


Assuntos
Reparo do DNA , Polinucleotídeo 5'-Hidroxiquinase/fisiologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sítios de Ligação , Domínio Catalítico , Clonagem Molecular , Cristalografia por Raios X , DNA Complementar/metabolismo , Relação Dose-Resposta a Droga , Glutationa Transferase/metabolismo , Cinética , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Oligonucleotídeos/química , Monoéster Fosfórico Hidrolases/química , Fosforilação , Polinucleotídeo 5'-Hidroxiquinase/química , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Espectrometria de Fluorescência , Eletricidade Estática , Especificidade por Substrato , Tripsina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA