Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Se Pu ; 42(1): 24-37, 2024 Jan 08.
Artigo em Zh | MEDLINE | ID: mdl-38197204

RESUMO

Pharmaceuticals and personal care products (PPCPs) are emerging contaminants frequently detected in aquatic environments at trace levels. These chemicals have diverse structures and physicochemical properties and includes pharmaceuticals like antibiotics, antihypertensive drugs, antiviral drugs, and psychotropic drugs that are widely used in large quantities worldwide. Considering the large number of pharmaceuticals currently in usage, it is crucial to establish a priority list of PPCPs that should be monitored and/or treated first. An accurate understanding of the occurrence and levels of PPCPs in aquatic environments is essential for providing objective materials for monitoring these emerging contaminants. Therefore, accurate, efficient, sensitive, and high-throughput screening techniques need to be established for determining and quantifying PPCPs. This study developed a method for the determination of 145 PPCPs (grouped into eleven categories: antibiotics, antihypertensive drugs, antidiabetic drugs, antiviral drugs, ß-receptor agonists, nitroimidazoles, H2 receptor antagonists, psychotropic drugs, hypolipidemic drugs, non-steroidal anti-inflammatory drugs, and others) in water. The method was based on large volume direct injection without sample enrichment and cleanup and used ultra-high performance liquid chromatography-triple quadrupole mass spectrometry (UHPLC-MS/MS). Water samples were collected and filtered through a 0.22-µm regenerated cellulose (RC) filter membrane. Subsequently, Na2EDTA was added to the samples to adjust their pH to 6.0-8.0. Internal standards were mixed with the solutions, and because of the addition of Na2EDTA, the interference of metal ions could be eliminated in the determination of compounds, especially for tetracycline and quinolone antibiotics. Among the six filter membranes tested in this study (PES, PFTE-Q, PFTE, MCE, GHP, and RC), RC filter membranes were screened for water sample filtration. The UHPLC-MS/MS parameters were optimized by comparing the results of various mobile phases, as well as by establishing the best instrumental conditions. The 145 PPCPs were separated using an Phenomenex Kinetex C18 column (50 mm×3 mm, 2.6 µm) via gradient elution. The mobile phases were 0.1% (v/v) formic acid aqueous solution containing 5 mmol/L ammonium formate and acetonitrile for positive ion modes, 5 mmol/L aqueous solutions of ammonium formate and acetonitrile for negative ion modes. The samples were quantified using the scheduled multiple reaction monitoring (scheduled-MRM) mode with electrospray ionization in positive and negative ion modes. A standard internal calibration procedure was used to calculate contents of sample. The established method was systematically verified, and it demonstrated a good linear relationship. The average recoveries of the 145 PPCPs at the three spiked levels were in the range of 80.4%-128% with relative standard deviations (RSDs, n=6) of 0.6%-15.6%. The method detection limits (MDLs) ranged from 0.015 to 5.515 ng/L. Finally, the optimization method was applied to analyze the 145 PPCPs in 11 surface water samples and 6 drinking water samples. Overall, 93 (64%) out of the 145 analytes were detected. The total contents of the PPCPs in surface water samples ranged from 276.9 to 2705.7 ng/L. The detection frequencies of antidiabetic, antiviral, and psychotropic drugs were 100%. The total contents of the PPCPs in drinking water samples ranged from 140.5 to 211.5 ng/L, and antibiotics, antidiabetic drugs, and antiviral drugs comprised the largest proportion of analytes (by mass concentration) in drinking water samples. Our method exhibited high analytical speed and high sensitivity. It is thus suitable for the trace analysis and determination of the 145 PPCPs in environmental water and showed improved detection efficiency for PPCPs in water, indicating that it has a high potential for practical applications. This study can extend technical support for further pollution-level analysis of PPCPs in water and provide an objective basis for environmental management.


Assuntos
Água Potável , Poluentes Químicos da Água , Acetonitrilas , Antibacterianos , Anti-Hipertensivos , Antivirais , Cromatografia Líquida de Alta Pressão , Cosméticos , Ácido Edético , Hipoglicemiantes , Preparações Farmacêuticas , Psicotrópicos , Espectrometria de Massas em Tandem , Poluentes Químicos da Água/análise
2.
Front Pharmacol ; 9: 236, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29615909

RESUMO

The quality control research of traditional Chinese medicine (TCM) is lagged far behind the space of progress in modernization and globalization. Thus the concept of quality marker (Q-marker) was proposed recently to guide the quality investigations of TCM. However, how to discover and validate the Q-marker is still a challenge. In this paper, a system pharmacology based strategy was proposed to discover Q-marker of HuangQin decoction (HQD) to attenuate Intestinal Damage. Using this strategy, nine measurable compounds including paeoniflorin, baicalin, scutellarein, liquiritigenin, norwogonin, baicalein, glycyrrhizic acid, wogonin, and oroxylin A were screened out as potential markers. Standard references of these nine compounds were pooled together as components combination according to their corresponding concentration in HQD. The bioactive equivalence between components combination and HQD was validated using wound healing test and inflammatory factor determination experiment. The comprehensive results indicated that components combination is almost bioactive equivalent to HQD and could serve as the Q-markers. In conclusion, our study put forward a promising strategy for Q-markers discovery.

3.
Front Pharmacol ; 8: 156, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28424615

RESUMO

Irinotecan (CPT-11) is a potent chemotherapeutic agent, however, its clinical usage is often limited by the induction of severe gastrointestinal (GI) toxicity, especially late-onset diarrhea. HuangQin Decoction (HQD), commonly used for the treatment of GI ailments, has been proved could significantly ameliorate the intestinal toxicity of CPT-11. To reveal the mechanisms of CPT-11-induced toxicity and the modulation effects of HQD, a previous untargeted metabolomics study was performed and the results indicated that HQD may protect the GI tract by altering the metabolism of bile acids (BAs). Nevertheless, the untargeted assays are often less sensitive and/or efficient. In order to further confirm our previous findings, here in this paper, serum and tissues metabolic profiles of 17 BAs were analyzed using liquid chromatography-tandem mass spectrometry based targeted metabolomics. The results indicated that serum and tissues levels of most BAs were significantly decreased after CPT-11 administration, except some hydrophobic BAs. Co-treatment with HQD could markedly attenuate CPT-11-induced GI toxicity and reverse the alterations of hydrophobic BAs. Despite the fact that the BAs pool size remained unchanged, the balance of BAs had shifted leading to decreased toxicity after HQD treatment. The present study demonstrated for the first time that the precise interaction between HQD, CPT-11-induced intestinal toxicity and BAs' homeostasis.

4.
Front Pharmacol ; 8: 211, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28484391

RESUMO

Huangqin decoction (HQD), a traditional Chinese medicine (TCM), has been widely used to treat gastrointestinal syndrome in China for thousands of years. Chemotherapy drug irinotecan (CPT-11) is used clinically to treat various kinds of cancers but limited by its side effects, especially delayed diarrhea. Nowadays, HQD has been proved to be effective in attenuating the intestinal toxicity induced by CPT-11. HQD consists of four medicinal herbs including Scutellaria baicalensis Georgi, Glycyrrhiza uralensis Fisch, Paeonia lactiflora Pall, and Ziziphus jujuba Mill. Due to its complexity, the role of each herb and the multi-herb synergistic effects of the formula are poorly understood. In order to quantitatively assess the compatibility effects of HQD, mass spectrometry-based untargeted metabolomics studies were performed. The serum metabolic profiles of rats administered with HQD, single S. baicalensis decoction, S. baicalensis-free decoction and baicalin/baicalein combination were compared. A time-dependent trajectory upon principal component analysis was firstly used to visualize the overall differences. Then metabolites deregulation score and relative area under the curve were calculated and used as parameters to quantitatively evaluate the compatibility effects of HQD from the aspect of global metabolic profile and the specifically altered metabolites, respectively. The collective results indicated that S. baicalensis played a crucial role in the therapeutic effect of HQD on irinotecan-induced diarrhea. Both HQD and SS decoction regulated glycine, serine and threonine pathway. This study demonstrated that metabolomics was a promising tool to elucidate the compatibility effects of TCM or combinatorial drugs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA