Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 476, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745122

RESUMO

BACKGROUND: Heterosis has successfully enhanced maize productivity and quality. Although significant progress has been made in delineating the genetic basis of heterosis, the molecular mechanisms underlying its genetic components remain less explored. Allele-specific expression (ASE), the imbalanced expression between two parental alleles in hybrids, is increasingly being recognized as a factor contributing to heterosis. ASE is a complex process regulated by both epigenetic and genetic variations in response to developmental and environmental conditions. RESULTS: In this study, we explored the differential characteristics of ASE by analyzing the transcriptome data of two maize hybrids and their parents under four light conditions. On the basis of allele expression patterns in different hybrids under various conditions, ASE genes were divided into three categories: bias-consistent genes involved in basal metabolic processes in a functionally complementary manner, bias-reversal genes adapting to the light environment, and bias-specific genes maintaining cell homeostasis. We observed that 758 ASE genes (ASEGs) were significantly overlapped with heterosis quantitative trait loci (QTLs), and high-frequency variations in the promoter regions of heterosis-related ASEGs were identified between parents. In addition, 10 heterosis-related ASEGs participating in yield heterosis were selected during domestication. CONCLUSIONS: The comprehensive analysis of ASEGs offers a distinctive perspective on how light quality influences gene expression patterns and gene-environment interactions, with implications for the identification of heterosis-related ASEGs to enhance maize yield.


Assuntos
Alelos , Regulação da Expressão Gênica de Plantas , Vigor Híbrido , Regiões Promotoras Genéticas , Locos de Características Quantitativas , Zea mays , Zea mays/genética , Zea mays/metabolismo , Vigor Híbrido/genética , Perfilação da Expressão Gênica , Variação Genética , Transcriptoma
2.
J Microbiol Biotechnol ; 34(3): 689-699, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38346819

RESUMO

Colitis is a major gastrointestinal disease that threatens human health. In this study, a synbiotic composed of inulin and Pediococcus acidilactici (P. acidilactici) was investigated for its ability to alleviate dextran sulfate sodium (DSS)-induced colitis. The results revealed that the synbiotic, composed of inulin and P. acidilactici, attenuated the body weight loss and disease activity index (DAI) score in mice with DSS-mediated colitis. Determination of biochemical indicators found that the synbiotic increased anti-oxidation and alleviated inflammation in mice. Additionally, histopathological examination revealed that colonic goblet cell loss and severe mucosal damage in the model group were significantly reversed by the combination of inulin and P. acidilactici. Moreover, synbiotic treatment significantly reduced the levels of IL-1ß, TNF-α, and IL-6 in the serum of mice. Thus, a synbiotic composed of inulin and P. acidilactici has preventive and therapeutic effects on DSSinduced colitis in mice.


Assuntos
Colite Ulcerativa , Colite , Pediococcus acidilactici , Simbióticos , Humanos , Animais , Camundongos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/patologia , Inulina/farmacologia , Sulfato de Dextrana/toxicidade , Colite/induzido quimicamente , Colo/patologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA