Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
BMC Genomics ; 25(1): 521, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802746

RESUMO

BACKGROUND: Citrus is a major fruit crop, and RNA-sequencing (RNA-seq) data can be utilized to investigate its gene functions, heredity, evolution, development, and the detection of genes linked to essential traits or resistance to pathogens. However, it is challenging to use the public RNA-seq datasets for researchers without bioinformatics training, and expertise. RESULTS: OrangeExpDB is a web-based database that integrates transcriptome data of various Citrus spp., including C. limon (L.) Burm., C. maxima (Burm.) Merr., C. reticulata Blanco, C. sinensis (L.) Osbeck, and Poncirus trifoliata (L.) Raf., downloaded from the NCBI SRA database. It features a blast tool for browsing and searching, enabling quick download of expression matrices for different transcriptome samples. Expression of genes of interest can be easily generated by searching gene IDs or sequence similarity. Expression data in text format can be downloaded and presented as a heatmap, with additional sample information provided at the bottom of the webpage. CONCLUSIONS: Researchers can utilize OrangeExpDB to facilitate functional genomic analysis and identify key candidate genes, leveraging publicly available citrus RNA-seq datasets. OrangeExpDB can be accessed at http://www.orangeexpdb.com/ .


Assuntos
Citrus , Bases de Dados Genéticas , Citrus/genética , Transcriptoma , Perfilação da Expressão Gênica/métodos , Biologia Computacional/métodos , Regulação da Expressão Gênica de Plantas
2.
New Phytol ; 242(5): 2115-2131, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38358006

RESUMO

Drought is one of the major environmental constraints for wheat production world-wide. As the progenitor and genetic reservoir of common wheat, emmer wheat is considered as an invaluable gene pool for breeding drought-tolerant wheat. Combining GWAS and eGWAS analysis of 107 accessions, we identified 86 QTLs, 105 462 eQTLs as well as 68 eQTL hotspots associating with drought tolerance (DT) in emmer wheat. A complex regulatory network composed of 185 upstream regulator and 2432 downstream drought-responsive candidates was developed, of which TtOTS1 was found to play a negative effect in determining DT through affecting root development. This study sheds light on revealing the genetic basis underlying DT, which will provide the indispensable genes and germplasm resources for elite drought tolerance wheat improvement and breeding.


Assuntos
Secas , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Triticum , Triticum/genética , Triticum/fisiologia , Locos de Características Quantitativas/genética , Adaptação Fisiológica/genética , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Genes de Plantas , Polimorfismo de Nucleotídeo Único/genética , Fenótipo , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Resistência à Seca
3.
BMC Plant Biol ; 23(1): 170, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37003963

RESUMO

BACKGROUND: RNA-sequencing (RNA-seq) has been widely used to study the dynamic expression patterns of transcribed genes, which can lead to new biological insights. However, processing and analyzing these huge amounts of histological data remains a great challenge for wet labs and field researchers who lack bioinformatics experience and computational resources. RESULTS: We present BarleyExpDB, an easy-to-operate, free, and web-accessible database that integrates transcriptional profiles of barley at different growth and developmental stages, tissues, and stress conditions, as well as differential expression of mutants and populations to build a platform for barley expression and visualization. The expression of a gene of interest can be easily queried by searching by known gene ID or sequence similarity. Expression data can be displayed as a heat map, along with functional descriptions as well as Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, Proteins Families Database, and Simple Modular Architecture Research Tool annotations. CONCLUSIONS: BarleyExpDB will serve as a valuable resource for the barley research community to leverage the vast publicly available RNA-seq datasets for functional genomics research and crop molecular breeding.


Assuntos
Hordeum , Hordeum/genética , Genômica , Bases de Dados Genéticas , Biologia Computacional , Expressão Gênica , Perfilação da Expressão Gênica
4.
BMC Genomics ; 23(1): 724, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36284277

RESUMO

BACKGROUND: Salt stress is one of the most destructive environmental factors limiting crop growth and development. MicroRNAs (miRNAs) are a class of conserved endogenous small non-coding RNAs, playing the crucial role in regulating salt response and tolerance in plants. However, the miRNAs in wild emmer wheat, especially the key and specific salt-responsive miRNAs are not well studied. RESULTS: Here, we performed small RNA, transcriptome, and degradome sequencing of both of salt-tolerance (ST) and salt-sensitive (SS) wild emmer genotypes to identify the miRNA-mRNA modules associating with salt tolerance. Totally, 775 miRNAs, including 361 conserved known miRNAs and 414 novel miRNAs were detected. Differential expression analysis identified 93 salt-responsive miRNAs under salt stress. Combined with RNA-seq and degradome sequencing analysis, 224 miRNA-mRNA modules displayed the complete opposite expression trends between ST and SS genotypes, most of which functionally enriched into ROS homeostasis maintaining, osmotic pressure modulating, and root growth and development. Finally, the qRT-PCR and a large-scale yeast functional screening were also performed to initially validate the expression pattern and function of candidate genes. CONCLUSIONS: This study reported the key and specific miRNA-mRNA modules associated with salt tolerance in wild emmer, which lay the foundation for improving the salt tolerance in cultivated emmer and bread wheat through miRNA engineering approach.


Assuntos
MicroRNAs , Tolerância ao Sal , Tolerância ao Sal/genética , Triticum/genética , Triticum/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA de Plantas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação da Expressão Gênica de Plantas , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico/genética
5.
BMC Genomics ; 23(1): 264, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35382737

RESUMO

BACKGROUND: The plant-specific IQ67-domain (IQD) gene family plays an important role in plant development and stress responses. However, little is known about the IQD family in common wheat (Triticum aestivum L), an agriculturally important crop that provides more than 20% of the calories and protein consumed in the modern human diet. RESULTS: We identified 125 IQDs in the wheat genome and divided them into four subgroups by phylogenetic analysis. The IQDs belonging to the same subgroup had similar exon-intron structure and conserved motif composition. Polyploidization contributed significantly to the expansion of IQD genes in wheat. Characterization of the expression profile of these genes revealed that a few T. aestivum (Ta)IQDs showed high tissue-specificity. The stress-induced expression pattern also revealed a potential role of TaIQDs in environmental adaptation, as TaIQD-2A-2, TaIQD-3A-9 and TaIQD-1A-7 were significantly induced by cold, drought and heat stresses, and could be candidates for future functional characterization. In addition, IQD genes in the A, B and D subgenomes displayed an asymmetric evolutionary pattern, as evidenced by their different gain or loss of member genes, expression levels and nucleotide diversity. CONCLUSIONS: This study elucidated the potential biological functions and evolutionary relationships of the IQD gene family in wheat and revealed the divergent fates of IQD genes during polyploidization.


Assuntos
Genoma de Planta , Família Multigênica , Proteínas de Plantas , Triticum , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Triticum/genética , Triticum/metabolismo
6.
BMC Plant Biol ; 22(1): 117, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35291942

RESUMO

BACKGROUND: CCCH transcription factors are important zinc finger transcription factors involved in the response to biotic and abiotic stress and physiological and developmental processes. Barley (Hordeum vulgare) is an agriculturally important cereal crop with multiple uses, such as brewing production, animal feed, and human food. The identification and assessment of new functional genes are important for the molecular breeding of barley. RESULTS: In this study, a total of 53 protein-encoding CCCH genes unevenly dispersed on seven different chromosomes were identified in barley. Phylogenetic analysis categorized the barley CCCH genes (HvC3Hs) into eleven subfamilies according to their distinct features, and this classification was supported by intron-exon structure and conserved motif analysis. Both segmental and tandem duplication contributed to the expansion of CCCH gene family in barley. Genetic variation of HvC3Hs was characterized using publicly available exome-capture sequencing datasets. Clear genetic divergence was observed between wild and landrace barley populations in HvC3H genes. For most HvC3Hs, nucleotide diversity and the number of haplotype polymorphisms decreased during barley domestication. Furthermore, the HvC3H genes displayed distinct expression profiles for different developmental processes and in response to various types of stresses. The HvC3H1, HvC3H2 and HvC3H13 of arginine-rich tandem CCCH zinc finger (RR-TZF) genes were significantly induced by multiple types of abiotic stress and/or phytohormone treatment, which might make them as excellent targets for the molecular breeding of barley. CONCLUSIONS: Overall, our study provides a comprehensive characterization of barley CCCH transcription factors, their diversity, and their biological functions.


Assuntos
Hordeum , Regulação da Expressão Gênica de Plantas , Haplótipos/genética , Hordeum/genética , Hordeum/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Dedos de Zinco/genética
7.
BMC Plant Biol ; 22(1): 450, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36127641

RESUMO

BACKGROUND: Long noncoding RNAs (lncRNAs) are emerging as the important regulators involving in growth and development as well as stress response in plants. However, current lncRNA studies were mainly performed at the individual level and the significance of it is not well understood in wheat. RESULTS: In this study, the lncRNA landscape of wheat spike was characterized through analysing a total of 186 spike RNA-seq datasets from 93 wheat genotypes. A total of 35,913 lncRNAs as well as 1,619 lncRNA-mRNA pairs comprised of 443 lncRNAs and 464 mRNAs were obtained. Compared to coding genes, these lncRNAs displayed rather low conservation among wheat and other gramineous species. Based on re-sequencing data, the genetic variations of these lncRNA were investigated and obvious genetic bottleneck were found on them during wheat domestication process. Furthermore, 122 lncRNAs were found to act as ceRNA to regulate endogenous competition. Finally, association and co-localization analysis of the candidate lncRNA-mRNA pairs identified 170 lncRNAs and 167 target mRNAs significantly associated with spike-related traits, including lncRNA.127690.1/TraesCS2A02G518500.1 (PMEI) and lncRNA.104854.1/TraesCS6A02G050300.1 (ATG5) associated with heading date and spike length, respectively. CONCLUSIONS: This study reported the lncRNA landscape of wheat spike through the population transcriptome analysis, which not only contribute to better understand the wheat evolution from the perspective of lncRNA, but also lay the foundation for revealing roles of lncRNA playing in spike development.


Assuntos
RNA Longo não Codificante , Perfilação da Expressão Gênica , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Transcriptoma , Triticum/genética
8.
BMC Plant Biol ; 22(1): 267, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35641942

RESUMO

BACKGROUND: Cultivated barley (Hordeum vulgare) is widely used in animal feed, beverages, and foods and has become a model crop for molecular evolutionary studies. Few studies have examined the evolutionary fates of different types of genes in barley during the domestication process. RESULTS: The rates of nonsynonymous substitution (Ka) to synonymous substitution (Ks) were calculated by comparing orthologous genes in different barley groups (wild vs. landrace and landrace vs. improved cultivar). The rates of evolution, properties, expression patterns, and diversity of positively selected genes (PSGs) and negatively selected genes (NSGs) were compared. PSGs evolved more rapidly, possessed fewer exons, and had lower GC content than NSGs; they were also shorter and had shorter intron, exon, and first exon lengths. Expression levels were lower, the tissue specificity of expression was higher, and codon usage bias was weaker for PSGs than for NSGs. Nucleotide diversity analysis revealed that PSGs have undergone a more severe genetic bottleneck than NSGs. Several candidate PSGs were involved in plant growth and development, which might make them as excellent targets for the molecular breeding of barley. CONCLUSIONS: Our comprehensive analysis of the evolutionary, structural, and functional divergence between PSGs and NSGs in barley provides new insight into the evolutionary trajectory of barley during domestication. Our findings also aid future functional studies of PSGs in barley.


Assuntos
Hordeum , Domesticação , Evolução Molecular , Genoma de Planta/genética , Genômica , Hordeum/genética
9.
BMC Plant Biol ; 22(1): 454, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36131236

RESUMO

BACKGROUND: A gene family comprises a group of genes with similar functional domains that play various roles in plant growth, development, and responses to environmental stimuli. Barley (Hordeum vulgare L.) is the fourth most cultivated cereal crop worldwide, and it is an important model species for genetic studies. Systematic identification and annotation of gene families are key for studies of molecular function and evolutionary history. RESULTS: We constructed a multi-omics database containing 5593 genes of 77 gene families called the Barley Gene Family Database (BGFD: http://barleygfdb.com ). BGFD is a free, user-friendly, and web-accessible platform that provides data on barley family genes. BGFD provides intuitive visual displays to facilitate studies of the physicochemical properties, gene structure, phylogenetic relationships, and motif organization of genes. Massive multi-omics datasets have been acquired and processed to generate an atlas of expression pattern profiles and genetic variation in BGFD. The platform offers several practical toolkits to conduct searches, browse, and employ BLAST functions, and the data are downloadable. CONCLUSIONS: BGFD will aid research on the domestication and adaptive evolution of barley; it will also facilitate the screening of candidate genes and exploration of important agronomic traits in barley.


Assuntos
Hordeum , Hordeum/genética , Filogenia
10.
Int J Mol Sci ; 23(14)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35887327

RESUMO

RNA/DNA difference (RDD) is a post-transcriptional modification playing a crucial role in regulating diverse biological processes in eukaryotes. Although it has been extensively studied in plant chloroplast and mitochondria genomes, RDDs in plant nuclear genomes are not well studied at present. Here, we investigated the RDDs associated with fusarium head blight (FHB) through a novel method by comparing the RNA-seq data between Fusarium-infected and control samples of four wheat genotypes. A total of 187 high-confidence unique RDDs in 36 genes were identified, representing the first landscape of the FHB-responsive RDD in wheat. The majority (26) of these 36 RDD genes were correlated either positively or negatively with FHB levels. Effects of these RDDs on RNA and protein sequences have been identified, their editing frequency and the expression level of the corresponding genes provided, and the prediction of the effect on the minimum folding free energy of mRNA, miRNA binding, and colocation of RDDs with conserved domains presented. RDDs were predicted to induce modifications in the mRNA and protein structures of the corresponding genes. In two genes, TraesCS1B02G294300 and TraesCS3A02G263900, editing was predicted to enhance their affinity with tae-miR9661-5p and tae-miR9664-3p, respectively. To our knowledge, this study is the first report of the association between RDD and FHB in wheat; this will contribute to a better understanding of the molecular basis underlying FHB resistance, and potentially lead to novel strategies to improve wheat FHB resistance through epigenetic methods.


Assuntos
Fusarium , Triticum , DNA/metabolismo , Resistência à Doença/genética , Fusarium/genética , Doenças das Plantas/genética , RNA/metabolismo , RNA Mensageiro/metabolismo , Triticum/genética , Triticum/metabolismo
11.
Plant Biotechnol J ; 18(3): 732-742, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31471988

RESUMO

Wheat is one of the most important staple crops worldwide and also an excellent model species for crop evolution and polyploidization studies. The breakthrough of sequencing the bread wheat genome and progenitor genomes lays the foundation to decipher the complexity of wheat origin and evolutionary process as well as the genetic consequences of polyploidization. In this study, we sequenced 3286 BACs from chromosome 7DL of bread wheat cv. Chinese Spring and integrated the unmapped contigs from IWGSC v1 and available PacBio sequences to close gaps present in the 7DL assembly. In total, 8043 out of 12 825 gaps, representing 3 491 264 bp, were closed. We then used the improved assembly of 7DL to perform comparative genomic analysis of bread wheat (Ta7DL) and its D donor, Aegilops tauschii (At7DL), to identify domestication signatures. Results showed a strong syntenic relationship between Ta7DL and At7DL, although some small rearrangements were detected at the distal regions. A total of 53 genes appear to be lost genes during wheat polyploidization, with 23% (12 genes) as RGA (disease resistance gene analogue). Furthermore, 86 positively selected genes (PSGs) were identified, considered to be domestication-related candidates. Finally, overlapping of QTLs obtained from GWAS analysis and PSGs indicated that TraesCS7D02G321000 may be one of the domestication genes involved in grain morphology. This study provides comparative information on the sequence, structure and organization between bread wheat and Ae. tauschii from the perspective of the 7DL chromosome, which contribute to better understanding of the evolution of wheat, and supports wheat crop improvement.


Assuntos
Evolução Biológica , Cromossomos de Plantas/genética , Genoma de Planta , Triticum/genética , Aegilops/genética , Hibridização Genômica Comparativa , Locos de Características Quantitativas , Sintenia
12.
Curr Genomics ; 21(8): 621-644, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33414683

RESUMO

BACKGROUND: The basic helix-loop-helix (bHLH) transcription factor is one of the most important gene families in plants, playing a key role in diverse metabolic, physiological, and developmental processes. Although it has been well characterized in many plants, the significance of the bHLH family in barley is not well understood at present. METHODS: Through a genome-wide search against the updated barley reference genome, the genomic organization, evolution and expression of the bHLH family in barley were systematically analyzed. RESULTS: We identified 141 bHLHs in the barley genome (HvbHLHs) and further classified them into 24 subfamilies based on phylogenetic analysis. It was found that HvbHLHs in the same subfamily shared a similar conserved motif composition and exon-intron structures. Chromosome distribution and gene duplication analysis revealed that segmental duplication mainly contributed to the expansion of HvbHLHs and the duplicated genes were subjected to strong purifying selection. Furthermore, expression analysis revealed that HvbHLHs were widely expressed in different tissues and also involved in response to diverse abiotic stresses. The co-expression network was further analyzed to underpin the regulatory function of HvbHLHs. Finally, 25 genes were selected for qRT-PCR validation, the expression profiles of HvbHLHs showed diverse patterns, demonstrating their potential roles in relation to stress tolerance regulation. CONCLUSION: This study reported the genome organization, evolutionary characteristics and expression profile of the bHLH family in barley, which not only provide the targets for further functional analysis, but also facilitate better understanding of the regulatory network bHLH genes involved in stress tolerance in barley.

13.
BMC Genomics ; 20(1): 750, 2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31623562

RESUMO

BACKGROUND: Mitogen-activated protein kinase (MAPK) cascade is a conserved and universal signal transduction module in organisms. Although it has been well characterized in many plants, no systematic analysis has been conducted in barley. RESULTS: Here, we identified 20 MAPKs, 6 MAPKKs and 156 MAPKKKs in barley through a genome-wide search against the updated reference genome. Then, phylogenetic relationship, gene structure and conserved protein motifs organization of them were systematically analyzed and results supported the predictions. Gene duplication analysis revealed that segmental and tandem duplication events contributed to the expansion of barley MAPK cascade genes and the duplicated gene pairs were found to undergone strong purifying selection. Expression profiles of them were further investigated in different organs and under diverse abiotic stresses using the available 173 RNA-seq datasets, and then the tissue-specific and stress-responsive candidates were found. Finally, co-expression regulatory network of MAPK cascade genes was constructed by WGCNA tool, resulting in a complicated network composed of a total of 72 branches containing 46 HvMAPK cascade genes and 46 miRNAs. CONCLUSION: This study provides the targets for further functional study and also contribute to better understand the MAPK cascade regulatory network in barley and beyond.


Assuntos
Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Genoma de Planta/genética , Hordeum/genética , Sistema de Sinalização das MAP Quinases/genética , Proteínas de Plantas/genética , Motivos de Aminoácidos , Mapeamento Cromossômico , Evolução Molecular , Duplicação Gênica , Perfilação da Expressão Gênica , Hordeum/classificação , Hordeum/metabolismo , Família Multigênica , Especificidade de Órgãos , Filogenia , Proteínas de Plantas/química , Estresse Fisiológico/genética
14.
Curr Genomics ; 20(5): 371-388, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32476994

RESUMO

BACKGROUND: The TIFY gene family is a group of plant-specific proteins involved in the jasmonate (JA) metabolic process, which plays a vital role in plant growth and development as well as stress response. Although it has been extensively studied in many species, the significance of this family is not well studied in wheat. OBJECTIVE: To comprehensively understand the genome organization and evolution of TIFY family in wheat, a genome-wide identification was performed in wheat and its two progenitors using updated genome information provided here. RESULTS: In total, 63, 13 and 17 TIFY proteins were identified in wheat, Triticum urartu and Aegilops tauschii respectively. Phylogenetic analysis clustered them into 18 groups with 14 groups possessing A, B and D copies in wheat, demonstrating the completion of the genome as well as the two rounds of allopolyploidization events. Gene structure, conserved protein motif and cis-regulatory element divergence of A, B, D homoeologous copies were also investigated to gain insight into the evolutionary conservation and divergence of homoeologous genes. Furthermore, the expression profiles of the genes were detected using the available RNA-seq and the expression of 4 drought-responsive candidates was further validated through qRT-PCR analysis. Finally, the co-expression network was constructed and a total of 22 nodes with 121 edges of gene pairs were found. CONCLUSION: This study systematically reported the characteristics of the wheat TIFY family, which ultimately provided important targets for further functional analysis and also facilitated the elucidation of the evolution mechanism of TIFY genes in wheat and more.

16.
BMC Genomics ; 17(1): 636, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27527343

RESUMO

BACKGROUND: The AP2/ERF transcription factor is one of the most important gene families in plants, which plays the vital role in regulating plant growth and development as well as in response to diverse stresses. Although AP2/ERFs have been thoroughly characterized in many plant species, little is known about this family in the model plant Brachypodium distachyon, especially those involved in the regulatory network of stress processes. RESULTS: In this study, a comprehensive genome-wide search was performed to identify AP2/ERF gene family in Brachypodium and a total of 141 BdAP2/ERFs were obtained. Phylogenetic analysis classified them into four subfamilies, of which 112 belonged to ERF, four to RAV and 24 to AP2 as well as one to soloist subfamily respectively, which was in accordance with the number of AP2 domains and gene structure analysis. Chromosomal localization, gene structure, conserved protein motif and cis-regulatory elements as well as gene duplication events analysis were further performed to systematically investigate the evolutionary features of these BdAP2/ERF genes. Furthermore, the regulatory network between BdAP2/ERF and other genes were constructed using the orthology-based method, and 39 BdAP2/ERFs were found to be involved in the regulatory network and 517 network branches were identified. The expression profiles of BdAP2/ERF during development and under diverse stresses were investigated using the available RNA-seq and microarray data and ten tissue-specific and several stress-responsive BdAP2/ERF genes were identified. Finally, 11 AP2/ERF genes were selected to validate their expressions in different tissues and under different stress treatments using RT-PCR method and results verified that these AP2/ERFs were involved in various developmental and physiological processes. CONCLUSIONS: This study for the first time reported the characteristics of the BdAP2/ERF family, which will provide the invaluable information for further evolutionary and functional studies of AP2/ERF in Brachypodium, and also contribute to better understanding the molecular basis for development and stresses tolerance in this model species and beyond.


Assuntos
Brachypodium/genética , Genoma de Planta , Proteínas de Plantas/metabolismo , Fator de Transcrição AP-2/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Brachypodium/metabolismo , Bases de Dados Genéticas , Evolução Molecular , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , MicroRNAs/genética , MicroRNAs/metabolismo , Oryza/genética , Oryza/metabolismo , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Elementos Reguladores de Transcrição/genética , Estresse Fisiológico , Fator de Transcrição AP-2/classificação , Fator de Transcrição AP-2/genética
17.
Front Plant Sci ; 15: 1412953, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38841284

RESUMO

Microsatellites, known as simple sequence repeats (SSRs), are short tandem repeats of 1 to 6 nucleotide motifs found in all genomes, particularly eukaryotes. They are widely used as co-dominant markers in genetic analyses and molecular breeding. Triticeae, a tribe of grasses, includes major cereal crops such as bread wheat, barley, and rye, as well as abundant forage and lawn grasses, playing a crucial role in global food production and agriculture. To enhance genetic work and expedite the improvement of Triticeae crops, we have developed TriticeaeSSRdb, an integrated and user-friendly database. It contains 3,891,705 SSRs from 21 species and offers browsing options based on genomic regions, chromosomes, motif types, and repeat motif sequences. Advanced search functions allow personalized searches based on chromosome location and length of SSR. Users can also explore the genes associated with SSRs, design customized primer pairs for PCR validation, and utilize practical tools for whole-genome browsing, sequence alignment, and in silico SSR prediction from local sequences. We continually update TriticeaeSSRdb with additional species and practical utilities. We anticipate that this database will greatly facilitate trait genetic analyses and enhance molecular breeding strategies for Triticeae crops. Researchers can freely access the database at http://triticeaessrdb.com/.

18.
Mitochondrial DNA B Resour ; 9(3): 327-331, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476838

RESUMO

Bauhinia glauca subsp. hupehana (Craib) T. C. Chen 1988, a member of the Leguminosae family, Cercidoideae subfamily, and Bauhinia genus, has a rich history of traditional usage in Chinese medicine. Renowned for its analgesic properties, it is commonly employed for managing inflammation and pain. This study aimed to sequence the complete chloroplast genome of B. glauca subsp. hupehana using Illumina paired-end sequencing data. The chloroplast genome spans 156,967 bp and consists of four main regions: the large single-copy (LSC) region (89,185 bp), the small single-copy (SSC) region (19,146 bp), and a pair of inverted repeats (IRs) (24,318 bp). The overall GC content of the chloroplast genome is 36.19%, with specific values of 33.99%, 29.79%, and 42.76% for the LSC, SSC, and IR regions, respectively. A total of 128 genes were annotated in the chloroplast genome, including 83 protein-coding genes, 37 tRNA genes, and eight rRNA genes. Phylogenetic analysis revealed that B. glauca subsp. hupehana is closely related to Bauhinia racemose, indicating a sister taxon relationship between the two species. This study significantly contributes to the chloroplast genomic resource for Bauhinia, laying the groundwork for future phylogenetic investigations within the genus.

19.
Front Plant Sci ; 14: 1168124, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180392

RESUMO

Gene duplication resulting from whole-genome duplication (WGD), small-scale duplication (SSD), or unequal hybridization plays an important role in the expansion of gene families. Gene family expansion can also mediate species formation and adaptive evolution. Barley (Hordeum vulgare) is the world's fourth largest cereal crop, and it contains valuable genetic resources due to its ability to tolerate various types of environmental stress. In this study, 27,438 orthogroups in the genomes of seven Poaceae were identified, and 214 of them were significantly expanded in barley. The evolutionary rates, gene properties, expression profiles, and nucleotide diversity between expanded and non-expanded genes were compared. Expanded genes evolved more rapidly and experienced lower negative selection. Expanded genes, including their exons and introns, were shorter, they had fewer exons, their GC content was lower, and their first exons were longer compared with non-expanded genes. Codon usage bias was also lower for expanded genes than for non-expanded genes; the expression levels of expanded genes were lower than those of non-expanded genes, and the expression of expanded genes showed higher tissue specificity than that of non-expanded genes. Several stress-response-related genes/gene families were identified, and these genes could be used to breed barley plants with greater resistance to environmental stress. Overall, our analysis revealed evolutionary, structural, and functional differences between expanded and non-expanded genes in barley. Additional studies are needed to clarify the functions of the candidate genes identified in our study and evaluate their utility for breeding barley plants with greater stress resistance.

20.
Plants (Basel) ; 12(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37687268

RESUMO

Wheat (Triticum aestivum L.) is a staple food crop that provides 20% of total human calorie consumption. Gene duplication has been considered to play an important role in evolution by providing new genetic resources. However, the evolutionary fates and biological functions of the duplicated genes in wheat remain to be elucidated. In this study, the resulting data showed that the duplicated genes evolved faster with shorter gene lengths, higher codon usage bias, lower expression levels, and higher tissue specificity when compared to non-duplicated genes. Our analysis further revealed functions of duplicated genes in various biological processes with significant enrichment to environmental stresses. In addition, duplicated genes derived from dispersed, proximal, tandem, transposed, and whole-genome duplication differed in abundance, evolutionary rate, gene compactness, expression pattern, and genetic diversity. Tandem and proximal duplicates experienced stronger selective pressure and showed a more compact gene structure with diverse expression profiles than other duplication modes. Moreover, genes derived from different duplication modes showed an asymmetrical evolutionary pattern for wheat A, B, and D subgenomes. Several candidate duplication hotspots associated with wheat domestication or polyploidization were characterized as potential targets for wheat molecular breeding. Our comprehensive analysis revealed the evolutionary trajectory of duplicated genes and laid the foundation for future functional studies on wheat.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA