Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Small ; : e2308002, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38084459

RESUMO

In order to reveal the dynamic response characteristic of thin film thermocouples (TFTCs), the nichrome/nisil (NiCr/NiSi) TFTCs are prepared onto the glass substrate. With short pulse infrared laser system, NiCr/NiSi TFTCs are dynamically calibrated. The thermoelectric electromotive force (TEF) curves of NiCr/NiSi TFTCs are recorded by the memory hicorder system, which could reflect TEF signals with resolution ratio in nanosecond and microvolt, simultaneously. With increasing laser energy from 15.49 to 29.59 mJ, TEF curves display more and more violent oscillation, even negative value. The results show that the bounce of thermal energy happens between two interfaces of TFTCs because the thermal conductivity of glass and air is significantly lower than that of NiSi/NiCr TFTCs. The bounce of thermal energy results in the obvious decrease of nNiCr and nNiSi , as well as oscillation of TEF. For laser energy in 29.59 mJ, the bounce of thermal energy in NiCr film could result in nNiCr < nNiSi . Then, TEF value appears abnormal negative value. Based on the results, the complex thermal energy transport process in TFTCs dynamic calibration is revealed, which results in the oscillation of thermal energy and TEF signal.

2.
Sensors (Basel) ; 22(8)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35458822

RESUMO

With the continuous improvement of train speeds, it is necessary to find the possible problems of bearings in time, otherwise they will cause serious consequences. Aiming at the characteristics of rapid temperature change of bearings, a thin film thermocouple temperature sensor was developed to measure the real-time temperature of the bearing's rolling elements during train operation. Using dc pulse magnetron sputtering technology, Al2O3 film, NiCr film, NiSi film, and SiO2 film were successively deposited on an aluminum alloy substrate. We studied their microstructure, static characteristics, dynamic characteristics, and repeatability. Finally, we installed an adaptive film temperature sensor on the bearing testing machine to measure the temperature of the rolling elements. The results show that the developed temperature sensor has good linearity in the range of 30~180 ℃. The Seebeck coefficient is 40.69 µV/℃, the nonlinear fitting error is less than 0.29%, the maximum repeatability error is less than 4.55%, and the dynamic response time is 1.42 µs. The temperature of the measured rolling elements is 6~10 ℃ higher than that of the outer ring, which can reflect the actual temperature of the bearing operation.

3.
Sensors (Basel) ; 22(19)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36236695

RESUMO

Aero-engine turbine stator blades are often used in harsh environments with high temperatures and high pressure and are prone to fatigue fractures. Real-time and accurate monitoring of blade surface stress and strain is critical to ensure safe operation. In this study, thin-film strain gauges (TFSGs) that can be used in high-temperature environments above 1000 °C were designed and fabricated using a PtRh6 thin film as the sensitive material. The hysteresis effect of the stress transfer upon establishing a thermo-mechanical coupling finite element model of the Inconel718 high-temperature nickel-based alloy equal-strength beam PtRh6 TFSGs was analyzed and the optimal combination of thin-film thickness and longitudinal grid length of wire-grid TFSGs was determined. In order to solve the problem of high-temperature insulation, the insulating properties of a single-layer Al2O3 insulating film, a single-layer ZrO2 insulating film, a double-layer Al2O3/ZrO2 composite insulating film, and a four-layer Al2O3/ZrO2/Al2O3/ZrO2 composite insulating film at high temperature were compared and studied using scanning electron microscopy to analyze the microscopic morphology and composition of the four insulating film structures. The results showed that the four-layer Al2O3/ZrO2/Al2O3/ZrO2 composite insulating film had the best insulating properties at high temperatures. On this basis, an Al2O3/ZrO2/Al2O3/ZrO2 composite insulating film, PtRh6 sensitive layer, and Al2O3 protective film were sequentially deposited on a high-temperature nickel-based alloy equal-strength beam using DC pulsed magnetron sputtering technology to obtain an Inconel718 high-temperature nickel-based alloy equal-strength beam PtRh6 TFSG. Its gauge factor (GF) and temperature coefficient of resistance (TCR) were calibrated, and the results showed that the sensor could be used in harsh environments of 1000 °C. The above results provide new ideas for measuring stress and strain in aerospace under high-temperature and high-pressure environments.

4.
Micromachines (Basel) ; 13(4)2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35457943

RESUMO

ZnO film is widely used in the field of health monitoring sensors, which has high requirements for the piezoelectric coefficient and film-to-substrate adhesion of the ZnO film. In this study, ZnO thin films were grown on a GH4169 superalloy steel (GSS) substrate using magnetron sputtering, and the effects of the sputtering power, argon-oxygen ratio, and sputtering pressure on the piezoelectric coefficient and film-to-substrate adhesion were studied. The composition, microstructure, and crystal orientation of ZnO thin films deposited under different process parameters were analyzed using X-ray diffraction (XRD), a scanning electron microscope (SEM), and an energy spectrum analyzer (EDS). The piezoelectric coefficient d33 was measured using a piezoelectric coefficient measuring instrument. The critical value of adhesion between the film and substrate was measured using the scratch method. The results demonstrated that the ZnO films had the most desirable properties when the sputtering power was 150 W, the argon-oxygen ratio was 25:10, and the sputtering pressure was 0.7 Pa. The XRD results showed that the ZnO film samples had the strongest (002) crystal orientation at 2θ = 34.4°; the SEM photos showed that the film samples were flat and uniform; and the EDS composition analysis results showed that the composition was close to the theoretical value. The maximum d33 coefficient value was 5.12 pC/N, and the maximum value of film-to-substrate adhesion between the ZnO films and GSS substrate was 4220 mN.

5.
Micromachines (Basel) ; 13(3)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35334685

RESUMO

At present, piezoelectric sensors are primarily applied in health monitoring areas. They may fall off owing to the adhesive's durability, and even damage the monitored equipment. In this paper, a piezoelectric film sensor (PFS) based on a positive piezoelectric effect (PPE) is presented and a ZnO film is deposited on a GH4169 superalloy steel (GSS) substrate using magnetron sputtering. The microstructure and micrograph of ZnO piezoelectric thin films were analyzed by an X-ray diffractometer (XRD), energy dispersive spectrometer (EDS), scanning electron microscope (SEM), and atomic force microscope (AFM). The results showed that the surface morphology was dense and uniform and had a good c-axis-preferred orientation. According to the test results of five piezoelectric sensors, the average value of the longitudinal piezoelectric coefficient was 1.36 pC/N, and the average value of the static calibration sensitivity was 19.77 mV/N. We selected the sensor whose parameters are closest to the average value for the dynamic test experiment and we drew the output voltage response curve of the piezoelectric film sensor under different loads. The measurement error was 4.03% when repeating the experiment six times. The research achievements reveal the excellent performance of the piezoelectric film sensor directly deposited on a GH4169 superalloy steel substrate. This method can reduce measurement error caused by the adhesive and reduce the risk of falling off caused by the aging of the adhesive, which provides a basis for the research of smart bolts and guarantees a better application in structural health monitoring (SHM).

6.
Materials (Basel) ; 15(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36295174

RESUMO

During the titanium alloy milling process, high temperatures in the tool-chip contact area will affect the tool life and precision of titanium alloy machining. Therefore, it is essential to measure the temperature of the tool-chip contact area continuously. In this paper, a finite element simulation model of the milling process was established using ABAQUS2020 to obtain the highest temperature location in the tool-chip contact area when milling titanium alloy. The integration of the wire with the alumina ceramic substrate formed an integrated wire substrate. Furthermore, NiCr, NiSi, and SiO2 films were deposited on the substrate sequentially using the DC pulsed magnetron sputtering technique. Finally, its microscopic morphology and static and dynamic performance were tested. The results show that the developed thin-film thermocouple temperature sensor has a Seebeck coefficient of 40.72 µV/°C and a dynamic response time of 0.703 ms. The application of the sensor to our titanium alloy milling experiments showed that the sensor can monitor the transient temperature in the tool-chip contact area, and its temperature measurement performance showed no detrimental effect from wearing. The effect of each milling parameter on the milling temperature was analyzed using ANOVA, and a regression model with an R-sq of 96.76% was obtained for the milling temperature.

7.
Materials (Basel) ; 11(10)2018 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-30332728

RESUMO

Indium tin oxide (ITO) film is one of the ideal candidates for transparent conductive cathode in methylammonium lead halide perovskite solar cells. Thus, the diffusion of methyl group in ITO film is inevitable, which could deteriorate the optical-electrical property of ITO film. In this study, ITO films with and without (100) preferred orientation were bombarded by the low-energy methyl group beam. After the bombardment, the optical-electrical property of ITO film without (100) preferred orientation deteriorated. The bombardment of methyl group had little influence on the optical-electrical property of ITO film with (100) preferred orientation. Finally, combining the crystallographic texture and chemical bond structure analysis, the diffusion mechanism of low-energy methyl group on ITO lattice and grain boundary, as well as the relation between the optical-electrical property and the diffusion of the methyl group, were discussed systematically. With the above results, ITO film with (100) preferred orientation could be an ideal candidate for transparent conductive cathode in methylammonium lead halide perovskite solar cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA