RESUMO
A regenerated fiber Bragg grating (RFBG) in silica fiber was used to observe the viscous relaxation process of the host silica fiber at high temperatures of around 1000 °C. Two factors, preannealing time and loaded tension, which affect viscous relaxation, were observed. When an RFBG is stretched after a longer preannealing, the measured viscosity of the optical fiber was observed to reach equilibrium faster, which means that preannealing accelerates viscous relaxation. A similar acceleration phenomenon was also observed when a larger load was applied to stretch the optical fiber, although the acceleration effect of loaded tension was not as strong as in the preannealing case. The results play an active role in establishing effective optical-fiber devices for application in high-temperature environments.
RESUMO
An electric-arc-based scheme to generate strength-controllable weak polarization mode coupling (PMC) points in polarization maintaining fiber (PMF) is described. The resulting PMC strengths can be readily controlled to be in the very weak range of -60 to -40 dB. In this range, excellent mechanical strength combined with high return loss is achieved. An experimental quasi-distributed temperature sensor is formed by three separate PMC points in a single PMF using the electric arc method.