Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1289387, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38188566

RESUMO

Introduction: The COVID-19 pandemic was caused by the zoonotic betacoronavirus SARS-CoV-2. SARS-CoV-2 variants have emerged due to adaptation in humans, shifting SARS-CoV-2 towards an endemic seasonal virus. We have termed this process 'virus domestication'. Methods: We analyzed aggregate COVID-19 data from a publicly funded healthcare system in Canada from March 7, 2020 to November 21, 2022. We graphed surrogate calculations of COVID-19 disease severity and SARS-CoV-2 variant plaque sizes in tissue culture. Results and Discussion: Mutations in SARS-CoV-2 adapt the virus to better infect humans and evade the host immune response, resulting in the emergence of variants with altered pathogenicity. We observed a decrease in COVID-19 disease severity surrogates after the arrival of the Delta variant, coinciding with significantly smaller plaque sizes. Overall, we suggest that SARS-CoV-2 has become more infectious and less virulent through viral domestication. Our findings highlight the importance of SARS-CoV-2 vaccination and help inform public policy on the highest probability outcomes during viral pandemics.

2.
Front Cell Infect Microbiol ; 11: 749039, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34712624

RESUMO

Viruses are diverse pathogens that use host factors to enter cells and cause disease. Imaging the entry and replication phases of viruses and their interactions with host factors is key to fully understanding viral infections. This review will discuss how confocal microscopy and imaging flow cytometry are used to investigate virus entry and replication mechanisms in fixed and live cells. Quantification of viral images and the use of cryo-electron microscopy to gather structural information of viruses is also explored. Using imaging to understand how viruses replicate and interact with host factors, we gain insight into cellular processes and identify novel targets to develop antiviral therapeutics and vaccines.


Assuntos
Comunicação Celular , Replicação Viral , Microscopia Crioeletrônica , Citometria de Fluxo , Interações Hospedeiro-Patógeno , Microscopia Confocal , Microscopia de Fluorescência
3.
Pharmacol Ther ; 220: 107712, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33121940

RESUMO

RSV infection of the lower respiratory tract in infants is the leading cause of pediatric hospitalizations and second to malaria in causing infant deaths worldwide. RSV also causes substantial morbidity in immunocompromised and elderly populations. The only available therapeutic is a prophylactic drug called Palivizumab that is a humanized monoclonal antibody, given to high-risk infants. However, this intervention is expensive and has a limited impact on annual hospitalization rates caused by RSV. No vaccine is available, nor are efficacious antivirals to treat an active infection, and there is still no consensus on how infants with bronchiolitis should be treated during hospital admission. In this comprehensive review, we briefly outline the function of the RSV proteins and their suitability as therapeutic targets. We then discuss the most promising drug candidates, their inhibitory mechanisms, and whether they are in the process of clinical trials. We also briefly discuss the reasons for some of the failures in RSV therapeutics and vaccines. In summary, we provide insight into current antiviral development and the considerations toward producing licensed antivirals and therapeutics.


Assuntos
Antivirais , Infecções por Vírus Respiratório Sincicial , Antivirais/uso terapêutico , Ensaios Clínicos como Assunto , Humanos , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA