Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Neurochem ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38742992

RESUMO

Intrauterine growth restriction (IUGR) is a pregnancy complication impairing fetal growth and development. The compromised development is often attributed to disruptions of oxygen and nutrient supply from the placenta, resulting in a number of unfavourable physiological outcomes with impaired brain and organ growth. IUGR is associated with compromised development of both grey and white matter, predisposing the infant to adverse neurodevelopmental outcomes, including long-lasting cognitive and motor difficulties. Cerebral thyroid hormone (TH) signalling, which plays a crucial role in regulating white and grey matter development, is dysregulated in IUGR, potentially contributing to the neurodevelopmental delays associated with this condition. Notably, one of the major TH transporters, monocarboxylate transporter-8 (MCT8), is deficient in the fetal IUGR brain. Currently, no effective treatment to prevent or reverse IUGR exists. Management strategies involve close antenatal monitoring, management of maternal risk factors if present and early delivery if IUGR is found to be severe or worsening in utero. The overall goal is to determine the most appropriate time for delivery, balancing the risks of preterm birth with further fetal compromise due to IUGR. Drug candidates have shown either adverse effects or little to no benefits in this vulnerable population, urging further preclinical and clinical investigation to establish effective therapies. In this review, we discuss the major neuropathology of IUGR driven by uteroplacental insufficiency and the concomitant long-term neurobehavioural impairments in individuals born IUGR. Importantly, we review the existing clinical and preclinical literature on cerebral TH signalling deficits, particularly the impaired expression of MCT8 and their correlation with IUGR. Lastly, we discuss the current evidence on MCT8-independent TH analogues which mimic the brain actions of THs by being metabolised in a similar manner as promising, albeit underappreciated approaches to promote grey and white matter development and improve the neurobehavioural outcomes following IUGR.

2.
Psychol Med ; 53(3): 759-770, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-34105450

RESUMO

BACKGROUND: Children born very preterm (VP) display altered growth in corticolimbic structures compared with full-term peers. Given the association between the cortiocolimbic system and anxiety, this study aimed to compare developmental trajectories of corticolimbic regions in VP children with and without anxiety diagnosis at 13 years. METHODS: MRI data from 124 VP children were used to calculate whole brain and corticolimbic region volumes at term-equivalent age (TEA), 7 and 13 years. The presence of an anxiety disorder was assessed at 13 years using a structured clinical interview. RESULTS: VP children who met criteria for an anxiety disorder at 13 years (n = 16) displayed altered trajectories for intracranial volume (ICV, p < 0.0001), total brain volume (TBV, p = 0.029), the right amygdala (p = 0.0009) and left hippocampus (p = 0.029) compared with VP children without anxiety (n = 108), with trends in the right hippocampus (p = 0.062) and left medial orbitofrontal cortex (p = 0.079). Altered trajectories predominantly reflected slower growth in early childhood (0-7 years) for ICV (ß = -0.461, p = 0.020), TBV (ß = -0.503, p = 0.021), left (ß = -0.518, p = 0.020) and right hippocampi (ß = -0.469, p = 0.020) and left medial orbitofrontal cortex (ß = -0.761, p = 0.020) and did not persist after adjusting for TBV and social risk. CONCLUSIONS: Region- and time-specific alterations in the development of the corticolimbic system in children born VP may help to explain an increase in anxiety disorders observed in this population.


Assuntos
Transtornos de Ansiedade , Lactente Extremamente Prematuro , Lobo Límbico , Córtex Pré-Frontal , Adolescente , Criança , Feminino , Humanos , Recém-Nascido , Masculino , Transtornos de Ansiedade/diagnóstico , Transtornos de Ansiedade/epidemiologia , Lactente Extremamente Prematuro/crescimento & desenvolvimento , Entrevista Psicológica , Lobo Límbico/diagnóstico por imagem , Lobo Límbico/crescimento & desenvolvimento , Imageamento por Ressonância Magnética , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/crescimento & desenvolvimento , Estudos Prospectivos , Estudos Longitudinais
3.
Front Neuroendocrinol ; 61: 100901, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33493504

RESUMO

Thyroid hormones (THs) are instrumental in promoting the molecular mechanisms which underlie the complex nature of neural development and function within the central nervous system (CNS) in vertebrates. The key neurodevelopmental process of myelination is conserved between humans and rodents, of which both experience peak fetal TH concentrations concomitant with onset of myelination. The importance of supplying adequate levels of THs to the myelin producing cells, the oligodendrocytes, for promoting their maturation is crucial for proper neural function. In this review we examine the key TH distributor and transport proteins, including transthyretin (TTR) and monocarboxylate transporter 8 (MCT8), essential for supporting proper oligodendrocyte and myelin health; and discuss disorders with impaired TH signalling in relation to abnormal CNS myelination in humans and rodents. Furthermore, we explore the importance of using novel TH analogues in the treatment of myelination disorders associated with abnormal TH signalling.


Assuntos
Transportadores de Ácidos Monocarboxílicos , Roedores , Animais , Sistema Nervoso Central , Humanos , Neurogênese , Hormônios Tireóideos
4.
Hippocampus ; 31(3): 321-334, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33320965

RESUMO

Intrauterine growth restriction (IUGR) is associated with hippocampal alterations that can increase the risk of short-term memory impairments later in life. Despite the role of hippocampal neurogenesis in learning and memory, research into the long-lasting impact of IUGR on these processes is limited. We aimed to determine the effects of IUGR on neuronal proliferation, differentiation and morphology, and on memory function at adolescent equivalent age. At embryonic day (E) 18 (term ∼E22), placental insufficiency was induced in pregnant Wistar rats via bilateral uterine vessel ligation to generate IUGR offspring (n = 10); control offspring (n = 11) were generated via sham surgery. From postnatal day (P) 36-44, spontaneous location recognition (SLR), novel object location and recognition (NOL, NOR), and open field tests were performed. Brains were collected at P45 to assess neurogenesis (immunohistochemistry), dendritic morphology (Golgi staining), and brain-derived neurotrophic factor expression (BDNF; Western blot analysis). In IUGR versus control rats there was no difference in object preference in the NOL or NOR, the similar and dissimilar condition of the SLR task, or in locomotion and anxiety-like behavior in the open field. There was a significant increase in the linear density of immature neurons (DCX+) in the subgranular zone (SGZ) of the dentate gyrus (DG), but no difference in the linear density of proliferating cells (Ki67+) in the SGZ, nor in areal density of mature neurons (NeuN+) or microglia (Iba-1+) in the DG in IUGR rats compared to controls. Dendritic morphology of dentate granule cells did not differ between groups. Protein expression of the BDNF precursor (pro-BDNF), but not mature BDNF, was increased in the hippocampus of IUGR compared with control rats. These findings highlight that while the long-lasting prenatal hypoxic environment may impact brain development, it may not impact hippocampal-dependent learning and memory in adolescence.


Assuntos
Retardo do Crescimento Fetal , Placenta , Animais , Giro Denteado , Feminino , Retardo do Crescimento Fetal/metabolismo , Hipocampo/metabolismo , Neurogênese/fisiologia , Gravidez , Ratos , Ratos Wistar
5.
Int J Mol Sci ; 22(9)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919014

RESUMO

Dehydroepiandrosterone (DHEA) and its sulfated metabolite (DHEAS) are dynamically regulated before birth and the onset of puberty. Yet, the origins and purpose of increasing DHEA[S] in postnatal development remain elusive. Here, we draw attention to this pre-pubertal surge from the adrenal gland-the adrenarche-and discuss whether this is the result of intra-adrenal gene expression specifically affecting the zona reticularis (ZR), if the ZR is influenced by the hypothalamic-pituitary axis, and the possible role of spino-sympathetic innervation in prompting increased ZR activity. We also discuss whether neural DHEA[S] synthesis is coordinately regulated with the developing adrenal gland. We propose that DHEA[S] is crucial in the brain maturation of humans prior to and during puberty, and suggest that the function of the adrenarche is to modulate, adapt and rewire the pre-adolescent brain for new and ever-changing social challenges. The etiology of DHEA[S] synthesis, neurodevelopment and recently described 11-keto and 11-oxygenated androgens are difficult to investigate in humans owing to: (i) ethical restrictions on mechanistic studies, (ii) the inability to predict which individuals will develop specific mental characteristics, and (iii) the difficulty of conducting retrospective studies based on perinatal complications. We discuss new opportunities for animal studies to overcome these important issues.


Assuntos
Adrenarca , Transtornos do Neurodesenvolvimento/fisiopatologia , Maturidade Sexual , Adolescente , Feminino , Humanos , Recém-Nascido , Gravidez
6.
Cerebellum ; 16(2): 306-313, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27255705

RESUMO

Elevated gestational concentrations of allopregnanolone are essential for the development and neuroprotection of the foetal brain. Preterm birth deprives the foetus of these high levels of allopregnanolone, which may contribute to the associated adverse effects on cerebellar development. Preterm birth alters expression of GABAA receptor subunit composition, which may further limit neurosteroid action. The objective of this study was to determine the effects of suppression of allopregnanolone levels on the markers of development and functional outcome. Pregnant guinea pigs were treated with finasteride at a dose (25 mg/kg maternal weight) shown to suppress allopregnanolone between 60 days of gestation until delivery (term ∼71 days). The cerebella from neonates, whose mothers were treated with finasteride or vehicle during pregnancy, were collected at postnatal age 8. Pups that received finasteride displayed significantly greater glial fibrillary acid protein area coverage and reduced GABAA receptor α6-subunit messenger RNA within the cerebellum than pups that were exposed to vehicle. These findings indicate that loss of neurosteroid action on the foetal brain in late gestation produces prolonged astrocyte activation and reductions in GABAA receptor α6-subunit expression. These changes may contribute to the long-term changes in function associated with preterm birth.


Assuntos
Cerebelo/embriologia , Pregnanolona/deficiência , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/metabolismo , Animais , Animais Recém-Nascidos , Astrócitos/metabolismo , Astrócitos/patologia , Western Blotting , Cerebelo/metabolismo , Cerebelo/patologia , Feminino , Finasterida , Cobaias , Imuno-Histoquímica , Masculino , Modelos Animais , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Gravidez , Complicações na Gravidez , Pregnanolona/sangue , RNA Mensageiro/metabolismo , Distribuição Aleatória , Reação em Cadeia da Polimerase em Tempo Real , Receptores de GABA-A/metabolismo
7.
Dev Neurobiol ; 83(1-2): 40-53, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36373424

RESUMO

Neurodevelopmental disorders such as schizophrenia and autism are thought to involve an imbalance of excitatory and inhibitory signaling in the brain. Intrauterine growth restriction (IUGR) is a risk factor for these disorders, with IUGR onset occurring during critical periods of neurodevelopment. The aim of this study was to determine the impact of IUGR on excitatory and inhibitory neurons of the fetal neocortex and hippocampus. Fetal brains (n = 2) were first collected from an unoperated pregnant guinea pig at mid-gestation (32 days of gestation [dg]; term ∼67 dg) to visualize excitatory (Ctip2) and inhibitory (calretinin [CR] and somatostatin [SST]) neurons via immunohistochemistry. Chronic placental insufficiency (CPI) was then induced via radial artery ablation at 30 dg in another cohort of pregnant guinea pigs (n = 8) to generate IUGR fetuses (52 dg; n = 8); control fetuses (52 dg; n = 7) were from sham surgeries with no radial artery ablation. At 32 dg, Ctip2- and CR-immunoreactive (IR) cells had populated the cerebral cortex, whereas SST-IR cells had not, suggesting these neurons were yet to complete migration. At 52 dg, in IUGR versus control fetuses, there was a reduction in SST-IR cell density in the cerebral cortex (p = .0175) and hilus of the dentate gyrus (p = .0035) but not the striatum (p > .05). There was no difference between groups in the density of Ctip2-IR (cortex) or CR-IR (cortex, hippocampus) neurons (p > 0.05). Thus, we propose that an imbalance in inhibitory (SST-IR) and excitatory (Ctip2-IR) neurons in the IUGR fetal guinea pig brain could lead to excitatory/inhibitory dysfunction commonly seen in neurodevelopmental disorders such as autism and schizophrenia.


Assuntos
Transtorno Autístico , Esquizofrenia , Animais , Feminino , Cobaias , Gravidez , Encéfalo , Retardo do Crescimento Fetal , Neurônios , Placenta
8.
Biol Psychiatry ; 93(6): 575-585, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36481064

RESUMO

BACKGROUND: Tensor-based investigations suggest that delayed or disrupted white matter development may relate to adverse behavioral outcomes in individuals born very preterm (VP); however, metrics derived from such models lack specificity. Here, we applied a fixel-based analysis framework to examine white matter microstructural and macrostructural correlates of concurrent internalizing and externalizing problems in VP and full-term (FT) children at 7 and 13 years. METHODS: Diffusion imaging data were collected in a longitudinal cohort of VP and FT individuals (130 VP and 29 FT at 7 years, 125 VP and 44 FT at 13 years). Fixel-based measures of fiber density, fiber-bundle cross-section, and fiber density and cross-section were extracted from 21 white matter tracts previously implicated in psychopathology. Internalizing and externalizing symptoms were assessed using the Strengths and Difficulties Questionnaire parent report at 7 and 13 years. RESULTS: At age 7 years, widespread reductions in fiber-bundle cross-section and fiber density and cross-section and tract-specific reductions in fiber density were related to more internalizing and externalizing symptoms irrespective of birth group. At age 13 years, fixel-based measures were not related to internalizing symptoms, while tract-specific reductions in fiber density, fiber-bundle cross-section, and fiber density and cross-section measures were related to more externalizing symptoms in the FT group only. CONCLUSIONS: Age-specific neurobiological markers of internalizing and externalizing problems identified in this study extend previous tensor-based findings to inform pathophysiological models of behavior problems and provide the foundation for investigations into novel preventative and therapeutic interventions to mitigate risk in VP and other high-risk infant populations.


Assuntos
Comportamento Problema , Substância Branca , Recém-Nascido , Lactente , Humanos , Criança , Adolescente , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Lactente Extremamente Prematuro , Imagem de Difusão por Ressonância Magnética/métodos , Fatores de Risco
9.
Artigo em Inglês | MEDLINE | ID: mdl-34655805

RESUMO

BACKGROUND: Children born very preterm (VP) are at higher risk of emotional and behavioral problems compared with full-term (FT) children. We investigated the neurobiological basis of internalizing and externalizing symptoms in individuals born VP and FT by applying a graph theory approach. METHODS: Structural and diffusion magnetic resonance imaging data were combined to generate structural connectomes and calculate measures of network integration and segregation at 7 (VP: 72; FT: 17) and 13 (VP: 125; FT: 44) years. Internalizing and externalizing symptoms were assessed at 7 and 13 years using the Strengths and Difficulties Questionnaire. Linear regression models were used to relate network measures and internalizing and externalizing symptoms concurrently at 7 and 13 years. RESULTS: Lower network integration (characteristic path length and global efficiency) was associated with higher internalizing symptoms in VP and FT children at 7 years, but not at 13 years. The association between network integration (characteristic path length) and externalizing symptoms at 7 years was weaker, but there was some evidence for differential associations between groups, with lower integration in the VP group and higher integration in the FT group associated with higher externalizing symptoms. At 13 years, there was some evidence that associations between network segregation (average clustering coefficient, transitivity, local efficiency) and externalizing symptoms differed between the VP and FT groups, with stronger positive associations in the VP group. CONCLUSIONS: This study provides insights into the neurobiological basis of emotional and behavioral problems after preterm birth, highlighting the role of the structural connectome in internalizing and externalizing symptoms in childhood and adolescence.


Assuntos
Conectoma , Nascimento Prematuro , Comportamento Problema , Adolescente , Criança , Imagem de Difusão por Ressonância Magnética , Humanos , Lactente Extremamente Prematuro , Recém-Nascido
10.
Lancet Child Adolesc Health ; 2(10): 755-764, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30236384

RESUMO

Intrauterine growth restriction (IUGR) is often the result of compromised placental function and suboptimal uteroplacental blood flow. Children born with IUGR have impaired cognitive functioning and specific memory deficits, indicating long-lasting impairments in hippocampal functioning; indeed, hippocampal volume is reduced in infants with IUGR. Animal studies have provided valuable insight into the nature of deficits in hippocampal-dependent functions observed in children born with IUGR; outcomes of experimental IUGR reveal reduced neuron numbers and morphological alterations in the cornu ammonis fields 1 and 3 and dentate gyrus subregions of the hippocampus. However, whether such early and ongoing structural changes in the hippocampus could account for deficits in spatial memory reported in adolescent rats with IUGR is yet to be established. Understanding the association between hippocampal structural and functional alterations in IUGR will aid in the development of interventions to minimise the effect of IUGR on the hippocampus and long-term cognitive outcomes.


Assuntos
Retardo do Crescimento Fetal/patologia , Hipocampo/embriologia , Deficiências da Aprendizagem/etiologia , Transtornos da Memória/etiologia , Adolescente , Animais , Criança , Hipocampo/patologia , Hipocampo/fisiopatologia , Humanos
11.
Int J Dev Neurosci ; 58: 50-58, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28192175

RESUMO

Neurosteroids are essential for aiding proper fetal neurodevelopment. Pregnancy compromises such as preterm birth, prenatal stress and intrauterine growth restriction are associated with an increased risk of developing behavioural and mood disorders, particularly during adolescence. These pathologies involve the premature loss or alteration of trophic steroid hormones reaching the fetus leading to impaired neurodevelopment. While the specific programming mechanisms are yet to be fully elucidated, in adult life, dysfunctions of allopregnanolone action are prevalent in individuals with depression, post-traumatic stress disorder and anxiety disorders. The objective of this study was to assess if changes in concentrations of the neurosteroid, allopregnanolone, may be a fetal programming factor in priming the brain towards a negative behavioural phenotype during the childhood to adolescent period using a guinea pig model. Pregnant guinea pigs received either vehicle (45% (2-hydroxypropyl)-ß-cyclodextrin) or the 5α-reductase inhibitor, finasteride (25mg/kg maternal weight) from gestational age 60 until spontaneous delivery (∼71days gestation). Male and female offspring from vehicle and finasteride treated dams were tested at postnatal day 20 (juvenile-equivalence) in an open field arena, and hippocampus and amygdala subsequently assessed for neurological changes in markers of development and GABA production pathways 24h later. Females with reduced allopregnanolone exposure in utero displayed increased neophobic-like responses to a change in their environment compared to female controls. There were no differences in the neurodevelopmental markers assessed; MAP2, NeuN, MBP, GFAP or GAD67 between intrauterine finasteride or vehicle exposure, in either the hippocampus or amygdala whereas GAT1 staining was decreased. This study indicates that an intrauterine reduction in the supply of allopregnanolone programs vulnerability of female offspring to anxiety-like disorders in juvenility without impacting long term allopregnanolone concentrations.


Assuntos
Ansiedade/tratamento farmacológico , Ansiedade/etiologia , Neurotransmissores/administração & dosagem , Pregnanolona/sangue , Inibidores de 5-alfa Redutase/toxicidade , Animais , Animais Recém-Nascidos , Ansiedade/sangue , Encéfalo/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Modelos Animais de Doenças , Comportamento Exploratório/efeitos dos fármacos , Feminino , Finasterida/toxicidade , Cobaias , Hidrocortisona/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/etiologia , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Radioimunoensaio , Fatores Sexuais , Estatísticas não Paramétricas
12.
J Steroid Biochem Mol Biol ; 160: 181-8, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26365557

RESUMO

Elevated levels of neurosteroids during late gestation protect the fetal brain from hypoxia/ischaemia and promote neurodevelopment. Suppression of allopregnanolone production during pregnancy leads to the onset of seizure-like activity and potentiates hypoxia-induced brain injury. Markers of myelination are reduced and astrocyte activation is increased. The placenta has a key role in maintaining allopregnanolone concentrations in the fetal circulation and brain during gestation and levels decline markedly after both normal and preterm birth. This leads to the preterm neonate developing in a neurosteroid deficient environment between delivery and term equivalence. The expression of 5α-reductases is also lower in the fetus prior to term. These deficiencies in neurosteroid exposure may contribute to the increase in incidence of the adverse patterns of behaviour seen in children that are born preterm. Repeated exposure to glucocorticoid stimulation suppresses 5α-reductase expression and allopregnanolone levels in the fetus and results in reduced myelination. Both fetal growth restriction and prenatal maternal stress lead to increased cortisol concentrations in the maternal and fetal circulation. Prenatal stress results in reduced expression of key GABAA receptor subunits that normally heighten neurosteroid sensitivity. These stressors also result in altered placental allopregnanolone metabolism pathways. These findings suggest that reduced neurosteroid production and action in the perinatal period may contribute to some of the adverse neurodevelopmental and behavioural outcomes that result from these pregnancy compromises. Studies examining perinatal steroid supplementation therapy with non-metabolisable neurosteroid analogues to improve these outcomes are warranted.


Assuntos
Neurotransmissores/metabolismo , Nascimento Prematuro/metabolismo , Animais , Encéfalo/embriologia , Encéfalo/metabolismo , Feminino , Feto/metabolismo , Humanos , Recém-Nascido , Gravidez , Pregnanolona/metabolismo , Receptores de GABA-A/metabolismo , Transdução de Sinais , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA