Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Soft Matter ; 16(44): 10187-10197, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33103707

RESUMO

Partially wetting nematic liquid crystal (NLC) films on substrates are unstable to dewetting-type instabilities due to destabilizing solid/NLC interaction forces. These instabilities are modified by the nematic nature of the films, which influences the effective solid/NLC interaction. In this work, we focus on the influence of imposed substrate anchoring on the instability development. The analysis is carried out within a long-wave formulation based on the Leslie-Ericksen description of NLC films. Linear stability analysis of the resulting equations shows that some features of the instability, such as emerging wavelengths, may not be influenced by the imposed substrate anchoring. Going further into the nonlinear regime, considered via large-scale GPU-based simulations, shows however that nonlinear effects may play an important role, in particular in the case of strong substrate anchoring anisotropy. Our simulations show that instability of the film develops in two stages: the first stage involves formation of ridges that are perpendicular to the local anchoring direction; and the second involves breakup of these ridges and formation of drops, whose final distribution is influenced by the anisotropy imposed by the substrate. Finally, we show that imposing more complex substrate anisotropy patterns allows us to reach basic understanding of the influence of substrate-imposed defects in director orientation on the instability evolution.

2.
J Theor Biol ; 256(4): 533-46, 2009 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-19014952

RESUMO

We develop a simple mathematical model for forced flow of culture medium through a porous scaffold in a tissue-engineering bioreactor. Porous-walled hollow fibres penetrate the scaffold and act as additional sources of culture medium. The model, based on Darcy's law, is used to examine the nutrient and shear-stress distributions throughout the scaffold. We consider several configurations of fibres and inlet and outlet pipes. Compared with a numerical solution of the full Navier-Stokes equations within the complex scaffold geometry, the modelling approach is cheap, and does not require knowledge of the detailed microstructure of the particular scaffold being used. The potential of this approach is demonstrated through quantification of the effect the additional flow from the fibres has on the nutrient and shear-stress distribution.


Assuntos
Reatores Biológicos , Modelos Biológicos , Engenharia Tecidual/métodos , Meios de Cultura , Humanos , Perfusão , Porosidade , Reologia , Estresse Mecânico , Engenharia Tecidual/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA