Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Cell ; 172(3): 618-628.e13, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29307492

RESUMO

Peptides have great potential to combat antibiotic resistance. While many platforms can screen peptides for their ability to bind to target cells, there are virtually no platforms that directly assess the functionality of peptides. This limitation is exacerbated when identifying antimicrobial peptides because the phenotype, death, selects against itself and has caused a scientific bottleneck that confines research to a few naturally occurring classes of antimicrobial peptides. We have used this seeming dissonance to develop Surface Localized Antimicrobial Display (SLAY), a platform that allows screening of unlimited numbers of peptides of any length, composition, and structure in a single tube for antimicrobial activity. Using SLAY, we screened ∼800,000 random peptide sequences for antimicrobial function and identified thousands of active sequences, dramatically increasing the number of known antimicrobial sequences. SLAY hits present with different potential mechanisms of peptide action and access to areas of antimicrobial physicochemical space beyond what nature has evolved. VIDEO ABSTRACT.


Assuntos
Antibacterianos/farmacologia , Descoberta de Drogas/métodos , Ensaios de Triagem em Larga Escala/métodos , Biblioteca de Peptídeos , Animais , Antibacterianos/química , Escherichia coli , Camundongos
2.
Antimicrob Agents Chemother ; 65(10): e0044321, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34280019

RESUMO

Otilonium bromide is a poorly absorbed oral medication used to control irritable bowel syndrome. It is thought to act as a muscle relaxant in the intestine. Here, we show that otilonium bromide has broad-spectrum antibacterial and antifungal activity, including against multidrug-resistant strains. Our results suggest otilonium bromide acts on enteric pathogens and may offer a new scaffold for poorly absorbed intestinal antimicrobial therapy.


Assuntos
Síndrome do Intestino Irritável , Humanos , Intestinos , Síndrome do Intestino Irritável/tratamento farmacológico , Compostos de Amônio Quaternário
3.
Inorganica Chim Acta ; 5172021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33568836

RESUMO

Three new coinage metal carbene complexes of silver and gold were synthesized from a thiamine inspired proligand. The compounds were characterized by HRMS, NMR spectroscopy (1H, 19F, 31P and 13C), FT-IR and elemental analysis. The coordination environment around the metal centers was correlated to the diffusion coefficients obtained from DOSY-NMR experiments and was in agreement with the nuclearity observed in the solid-state by single crystal X-ray crystallography. The silver and gold carbene compounds were subjected to MIC studies against a panel of pathogenic bacteria, including multidrug resistant strains, with the gold carbene derivative showing the most potent antimicrobial activity against Gram-positive methicillin resistant Staphylococcus aureus (MRSA).

4.
mSphere ; 5(6)2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33298574

RESUMO

Pathogenic strains of Vibrio cholerae require careful regulation of horizontally acquired virulence factors that are largely located on horizontally acquired genomic islands (HAIs). While TsrA, a Vibrionaceae-specific protein, is known to regulate the critical HAI virulence genes toxT and ctxA, its broader function throughout the genome is unknown. Here, we find that deletion of tsrA results in genomewide expression patterns that heavily correlate with those seen upon deletion of hns, a widely conserved bacterial protein that regulates V. cholerae virulence. This correlation is particularly strong for loci on HAIs, where all differentially expressed loci in the ΔtsrA mutant are also differentially expressed in the Δhns mutant. Correlation between TsrA and H-NS function extends to in vivo virulence phenotypes where deletion of tsrA compensates for the loss of ToxR activity in V. cholerae and promotes wild-type levels of mouse intestinal colonization. All in all, we find that TsrA broadly controls V. cholerae infectivity via repression of key HAI virulence genes and many other targets in the H-NS regulon.IMPORTANCE Cholera is a potentially lethal disease that is endemic in much of the developing world. Vibrio cholerae, the bacterium underlying the disease, infects humans utilizing proteins encoded on horizontally acquired genetic material. Here, we provide evidence that TsrA, a Vibrionaceae-specific protein, plays a critical role in regulating these genetic elements and is essential for V. cholerae virulence in a mouse intestinal model.


Assuntos
Regulação Bacteriana da Expressão Gênica , Regulon , Vibrio cholerae/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cólera/microbiologia , Biologia Computacional , Intestinos/microbiologia , Vibrio cholerae/genética , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
5.
mBio ; 9(1)2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29437928

RESUMO

Quaternary amine compounds (QAC) are potent antimicrobials used to prevent the spread of pathogenic bacteria. While they are known for their membrane-damaging properties, QAC action has been suggested to extend beyond the surface to intracellular targets. Here we characterize the range of action of the QAC biocide benzalkonium chloride (BZK) against the bacterial pathogen Acinetobacter baumannii At high concentrations, BZK acts through membrane disruption, but at low concentrations we show that wide-spread protein aggregation is associated with BZK-induced cell death. Resistance to BZK is found to develop through ribosomal protein mutations that protect A. baumannii against BZK-induced protein aggregation. The multifunctional impact of BZK led us to discover that alternative QAC structures, with low human toxicity, retain potent action against multidrug-resistant A. baumannii, Staphylococcus aureus, and Clostridium difficile and present opportunities for their development as antibiotics.IMPORTANCE Quaternary amine compounds (QACs) are widely used to prevent the spread of bacterial pathogens, but our understanding of their mode of action is incomplete. Here we describe disruption of bacterial proteostasis as an unrecognized action of QAC antimicrobial action and uncover the potential of diverse QAC structures to act as multitarget antibiotics.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/farmacologia , Compostos de Benzalcônio/farmacologia , Agregados Proteicos , Proteínas de Bactérias/metabolismo , Membrana Celular/efeitos dos fármacos , Clostridioides difficile/efeitos dos fármacos , Viabilidade Microbiana/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA