Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 43(43): 7149-7157, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37775302

RESUMO

Amniotes evolved a unique postsynaptic terminal in the inner ear vestibular organs called the calyx that receives both quantal and nonquantal (NQ) synaptic inputs from Type I sensory hair cells. The nonquantal synaptic current includes an ultrafast component that has been hypothesized to underlie the exceptionally high synchronization index (vector strength) of vestibular afferent neurons in response to sound and vibration. Here, we present three lines of evidence supporting the hypothesis that nonquantal transmission is responsible for synchronized vestibular action potentials of short latency in the guinea pig utricle of either sex. First, synchronized vestibular nerve responses are unchanged after administration of the AMPA receptor antagonist CNQX, while auditory nerve responses are completely abolished. Second, stimulus evoked vestibular nerve compound action potentials (vCAP) are shown to occur without measurable synaptic delay and three times shorter than the latency of auditory nerve compound action potentials (cCAP), relative to the generation of extracellular receptor potentials. Third, paired-pulse stimuli designed to deplete the readily releasable pool (RRP) of synaptic vesicles in hair cells reveal forward masking in guinea pig auditory cCAPs, but a complete lack of forward masking in vestibular vCAPs. Results support the conclusion that the fast component of nonquantal transmission at calyceal synapses is indefatigable and responsible for ultrafast responses of vestibular organs evoked by transient stimuli.SIGNIFICANCE STATEMENT The mammalian vestibular system drives some of the fastest reflex pathways in the nervous system, ensuring stable gaze and postural control for locomotion on land. To achieve this, terrestrial amniotes evolved a large, unique calyx afferent terminal which completely envelopes one or more presynaptic vestibular hair cells, which transmits mechanosensory signals mediated by quantal and nonquantal (NQ) synaptic transmission. We present several lines of evidence in the guinea pig which reveals the most sensitive vestibular afferents are remarkably fast, much faster than their auditory nerve counterparts. Here, we present neurophysiological and pharmacological evidence that demonstrates this vestibular speed advantage arises from ultrafast NQ electrical synaptic transmission from Type I hair cells to their calyx partners.


Assuntos
Células Ciliadas Vestibulares , Vestíbulo do Labirinto , Animais , Cobaias , Potenciais de Ação/fisiologia , Células Ciliadas Vestibulares/fisiologia , Transmissão Sináptica/fisiologia , Sinapses/fisiologia , Mamíferos
2.
Eur J Neurol ; 28(9): 3211-3219, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34160115

RESUMO

Normal stance relies on three sensory inputs: vision, proprioception and vestibular function. The Romberg test, trying to stand with feet together and eyes closed, is familiar to every medical student as a test of distal proprioceptive impairment. It remains the best known of Romberg's many remarkable contributions to clinical neurology. In Romberg's time almost nothing was known about the function of the vestibular system. We now know that standing with the eyes closed on a compliant rather than a firm surface is more a test of vestibular than proprioceptive function. Peripheral vestibular function tests in clinical use today all rely on measurements of oligosynaptic brainstem reflexes. Short-latency eye rotations in response to rapid, brief head rotations (head impulses) give an accurate, robust and reproducible measure of the function of any and each of the six semicircular canals. Short-latency evoked potentials from sternomastoid and inferior oblique muscles in response to loud clicks or skull taps (vestibular evoked myogenic potentials) give an accurate and reproducible measure of the function of each and any of the four otolith organs. In the present paper, we briefly review what is now known about the anatomy and physiology of the peripheral receptors and brainstem pathways mediating these reflexes and examine how this knowledge can help interpret the Romberg test.


Assuntos
Potenciais Evocados Miogênicos Vestibulares , Vestíbulo do Labirinto , Humanos , Membrana dos Otólitos , Canais Semicirculares , Testes de Função Vestibular
3.
Exp Brain Res ; 239(12): 3553-3564, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34562106

RESUMO

People with Parkinson's disease (PD) have increased visual dependency for balance and suspected vestibular dysfunction. Immersive virtual reality (VR) allows graded manipulation of visual sensory inputs during balance tasks, and hence VR coupled with portable force platforms have emerged as feasible, affordable, and validated tools for assessing sensory-motor integration of balance. This study aims to determine (i) how people with PD perform on a VR-based visual perturbation standing balance task compared to healthy controls (HC), and (ii) whether balance performance is influenced by vestibular function, when other known factors are controlled for. This prospective observational study compared the balance performance under varying sensory conditions in 40 people with mild to moderate PD with 40 age-matched HC. Vestibular function was assessed via Head Impulse Test (HIMP), cervical and ocular vestibular evoked myogenic potentials (cVEMPs and oVEMPs) and subjective visual vertical (SVV). Regression analyses were used to determine associations between VR balance performance on firm and foam surfaces with age, group, vestibular function, and lower limb proprioception. PD failed at significantly lower levels of visual perturbation than HC on both surfaces. In PD, greater disease severity was significantly associated with lower fall thresholds on both surfaces. Multiple PD participants failed prior to visual perturbation on foam. On firm, PD had a greater visual dependency. Increasing age, impaired proprioception, impaired SVV, abnormal HIMP and cVEMP scores were associated with worse balance performance. The multivariate model containing these factors explained 29% of the variability in balance performance on both surfaces. Quantitative VR-based balance assessment is safe and feasible in PD. Balance performance on both surfaces was associated with age, HIMP abnormality and proprioception.


Assuntos
Doença de Parkinson , Potenciais Evocados Miogênicos Vestibulares , Vestíbulo do Labirinto , Realidade Virtual , Teste do Impulso da Cabeça , Humanos , Doença de Parkinson/complicações
4.
Exp Brain Res ; 239(6): 1853-1862, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33846841

RESUMO

The suppression head impulse test paradigm (SHIMP) is a newly described indicator of vestibular function which yields two measures: vestibulo-ocular reflex (VOR) gain and a saccadic response. It is an alternative and complementary test to the head impulse test paradigm (HIMP). Parkinson's disease (PD) has known saccadic and central vestibular pathway dysfunction. This paper is the first description of SHIMP VOR gain and saccade characteristic in this population. This prospective observational study measured the SHIMP VOR gain and saccade characteristics in 39 participants with idiopathic PD and compared this to 40 healthy controls (HC). The effect of group, demographic variables and SHIMP characteristics were evaluated. SHIMP VOR gains were not significantly different between groups (p = 0.10). Compared to HC, the PD group mean SHIMP peak saccade velocity was significantly reduced by an average of 77.07°/sec (p < 0.001), and SHIMP saccade response latency was longer, with an average delay of 23.5 ms (p = 0.003). SHIMP saccade peak velocity was also associated with both head impulse velocity (p = 0.002) and SHIMP VOR gain (p = 0.004) variables, but there was no significant influence of these variables when SHIMP saccade peak velocity was considered as a predictor of PD (p = 0.52-0.91). VOR gains were unaffected by PD. PD-specific saccadic dysfunction, namely reduced peak saccade velocities and prolonged response latencies, were observed in the SHIMP-induced saccade responses. VOR gain using slow phase eye velocity is preferred as the indicator of vestibular function in the SHIMPs paradigm as non-vestibular factors affected saccade peak velocity.


Assuntos
Doença de Parkinson , Vestíbulo do Labirinto , Teste do Impulso da Cabeça , Humanos , Doença de Parkinson/complicações , Reflexo Vestíbulo-Ocular , Movimentos Sacádicos
5.
Eur Arch Otorhinolaryngol ; 278(6): 2057-2065, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33112983

RESUMO

PURPOSE: Parkinson's disease (PD) is a neurodegenerative disorder with possible vestibular system dysfunction. This study reports the transient and sustained functions of the otoliths and their reflex pathways in PD compared to healthy controls (HC) and determines if otolith function relates to previous fall history. METHODS: Forty participants with PD and 40 HC had their otolith function assessed. Transient saccular and utricular-mediated reflexes were assessed by cervical and ocular vestibular evoked myogenic potentials (cVEMPs and oVEMPs, respectively) elicited by air-conducted stimulus (clicks) and bone-conducted vibration (light tendon hammer taps). Static otolith function was assessed by the Curator Subjective Visual Vertical (SVV) test. RESULTS: Compared to HC, the PD group had significantly more absent cVEMP responses to both clicks (47.5% vs. 30%, respectively, p = 0.03) and taps (21.8% vs. 5%, respectively, p = 0.002). Only the PD group had bilaterally absent tap cVEMPs, this was related to previous falls history (p < 0. 001). In both groups, click oVEMPs were predominantly absent, and tap oVEMPs were predominantly present. The PD group had smaller tap oVEMP amplitudes (p = 0.03) and recorded more abnormal SVV responses (p = 0.01) and greater error on SVV compared to HC, p < 0.001. SVV had no relationship with VEMP responses (p = 0.14). CONCLUSIONS: PD impacts on cVEMP reflex pathways but not tap oVEMP reflex pathways. Bone-conducted otolith stimuli (taps) are more robust than air-conducted sound stimuli (clicks) for both o and cVEMPs. A lack of association between SVV and VEMP responses suggest that static and dynamic otolith functions are differentially affected in PD.


Assuntos
Doença de Parkinson , Potenciais Evocados Miogênicos Vestibulares , Estimulação Acústica , Humanos , Membrana dos Otólitos , Reflexo
6.
Curr Opin Neurol ; 33(1): 126-135, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31789675

RESUMO

PURPOSE OF REVIEW: To examine the recent literature concerning the neural basis and clinical evidence for the response of the labyrinth to sound and vibration: vestibular-evoked myogenic potentials (VEMPs) and vibration-induced nystagmus (VIN). RECENT FINDINGS: There are two streams of information from each otolith - a sustained stream (afferents with regular resting activity, signalling gravity and low-frequency linear accelerations) and a transient stream (afferents with irregular resting activity) signalling onset of linear acceleration, and sound and vibration. These irregular neurons are synchronized to each cycle of the stimulus. Neurons in the transient stream are tested by presenting sounds or vibration (500 Hz) and using surface electrodes to measure myogenic potentials from muscles activated by otolithic stimuli (VEMPs). 100 Hz vibration activates irregular canal afferents and causes a stimulus-locked VIN in patients with asymmetric canal function. These new tests of the transient system have one big advantage over older tests of the sustained system - they reliably show the effect of long-term unilateral vestibular loss. SUMMARY: The new physiological and anatomical evidence shows how sound and vibration activate otolith and canal receptors and so provides the scientific foundation for VEMPs and VIN, which are important tools for diagnosing vestibular disorders. VIDEO ABSTRACT: http://links.lww.com/CONR/A47.


Assuntos
Membrana dos Otólitos/fisiopatologia , Doenças Vestibulares/diagnóstico , Potenciais Evocados Miogênicos Vestibulares/fisiologia , Vestíbulo do Labirinto/fisiopatologia , Estimulação Acústica , Humanos , Neurônios/fisiologia , Doenças Vestibulares/fisiopatologia , Vibração
7.
Semin Neurol ; 40(1): 33-39, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31887751

RESUMO

Recent advances in vestibular testing now permit functional testing of all peripheral vestibular sense organs (all three semicircular canals, utricle, and saccule). This makes it possible to identify patients with isolated dysfunction of the utricle or saccule, even though parallel pathways for vestibular information are ultimately integrated centrally. Selective, isolated unilateral loss of utricular function as measured by ocular vestibular-evoked myogenic potentials (VEMPs) has been observed in patients with normal semicircular canal function as measured by the video head impulse test of all six semicircular canals, and normal bilateral saccular function as determined by symmetrical cervical VEMPs. How these patients present clinically and how they recover is discussed and contrasted with acute vestibular neuritis. In some patients, the unilateral loss of otolith organ (utricle or saccule) function persists and yet the patient recovers functionally to their usual lifestyle. Until the testing of all peripheral vestibular sense organs is routine, the frequency of isolated loss of otolith function cannot be gauged.


Assuntos
Membrana dos Otólitos/fisiopatologia , Doenças Vestibulares/diagnóstico , Doenças Vestibulares/fisiopatologia , Doenças do Nervo Vestibulococlear/diagnóstico , Doenças do Nervo Vestibulococlear/fisiopatologia , Humanos
8.
Audiol Neurootol ; 25(1-2): 25-34, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31553977

RESUMO

BACKGROUND: This paper discusses some of the concepts and major physiological issues in developing a means of electrically stimulating the otolithic system, with the final goal being the electrical stimulation of the otoliths in human patients. It contrasts the challenges of electrical stimulation of the otolith organs as compared to stimulation of the semicircular canals. Electrical stimulation may consist of trains of short-duration pulses (e.g., 0.1 ms duration at 400 Hz) by selective electrodes on otolith maculae or otolithic afferents, or unselective maintained DC stimulation by large surface electrodes on the mastoids - surface galvanic stimulation. SUMMARY: Recent anatomical and physiological results are summarized in order to introduce some of the unique issues in electrical stimulation of the otoliths. The first challenge is that each otolithic macula contains receptors with opposite polarization (opposing preferred directions of stimulation), unlike the uniform polarization of receptors in each semicircular canal crista. The puzzle is that in response to the one linear acceleration in the one macula, some otolithic afferents have an increased activation whereas others have decreased activation. Key Messages: At the vestibular nucleus this opposite receptor hair cell polarization and consequent opposite afferent input allow enhanced response to the one linear acceleration, via a "push-pull" neural mechanism in a manner analogous to the enhancement of semicircular canal responses to angular acceleration. Within each otolithic macula there is not just one uniform otolithic neural input to the brain - there are very distinctly different channels of otolithic neural inputs transferring the neural data to the brainstem. As a simplification these channels are characterized as the sustained and transient systems. Afferents in each system have different responses to stimulus onset and maintained stimulation and likely different projections, and most importantly different thresholds for activation by electrical stimulation and different adaptation rates to maintained stimulation. The implications of these differences are considered.


Assuntos
Estimulação Elétrica , Neurônios Aferentes/fisiologia , Membrana dos Otólitos/fisiologia , Canais Semicirculares/fisiologia , Animais , Humanos
9.
J Neurophysiol ; 122(1): 259-276, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31042414

RESUMO

Older studies of mammalian otolith physiology have focused mainly on sustained responses to low-frequency (<50 Hz) or maintained linear acceleration. So the otoliths have been regarded as accelerometers. Thus evidence of otolithic activation and high-precision phase locking to high-frequency sound and vibration appears to be very unusual. However, those results are exactly in accord with a substantial body of knowledge of otolith function in fish and frogs. It is likely that phase locking of otolith afferents to vibration is a general property of all vertebrates. This review examines the literature about the activation and phase locking of single otolithic neurons to air-conducted sound and bone-conducted vibration, in particular the high precision of phase locking shown by mammalian irregular afferents that synapse on striolar type I hair cells by calyx endings. Potassium in the synaptic cleft between the type I hair cell receptor and the calyx afferent ending may be responsible for the tight phase locking of these afferents even at very high discharge rates. Since frogs and fish do not possess full calyx endings, it is unlikely that they show phase locking with such high precision and to such high frequencies as has been found in mammals. The high-frequency responses have been modeled as the otoliths operating in a seismometer mode rather than an accelerometer mode. These high-frequency otolithic responses constitute the neural basis for clinical vestibular-evoked myogenic potential tests of otolith function.


Assuntos
Membrana dos Otólitos/fisiologia , Potenciais Evocados Miogênicos Vestibulares , Neuronite Vestibular/diagnóstico , Animais , Humanos , Mecanotransdução Celular , Membrana dos Otólitos/fisiopatologia , Som , Potenciais Sinápticos , Neuronite Vestibular/fisiopatologia , Vibração
10.
Exp Brain Res ; 235(4): 957-972, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28130556

RESUMO

The classical view of the otoliths-as flat plates of fairly uniform receptors activated by linear acceleration dragging on otoconia and so deflecting the receptor hair bundles-has been replaced by new anatomical and physiological evidence which shows that the maculae are much more complex. There is anatomical spatial differentiation across the macula in terms of receptor types, hair bundle heights, stiffness and attachment to the overlying otolithic membrane. This anatomical spatial differentiation corresponds to the neural spatial differentiation of response dynamics from the receptors and afferents from different regions of the otolithic maculae. Specifically, receptors in a specialized band of cells, the striola, are predominantly type I receptors, with short, stiff hair bundles and looser attachment to the overlying otoconial membrane than extrastriolar receptors. At the striola the hair bundles project into holes in the otolithic membrane, allowing for fluid displacement to deflect the hair bundles and activate the cell. This review shows the anatomical and physiological evidence supporting the hypothesis that fluid displacement, generated by sound or vibration, deflects the short stiff hair bundles of type I receptors at the striola, resulting in neural activation of the irregular afferents innervating them. So these afferents are activated by sound or vibration and show phase-locking to individual cycles of the sound or vibration stimulus up to frequencies above 2000 Hz, underpinning the use of sound and vibration for clinical tests of vestibular function.


Assuntos
Neurônios Aferentes/fisiologia , Som , Vestíbulo do Labirinto/anatomia & histologia , Vestíbulo do Labirinto/fisiologia , Vibração , Estimulação Acústica , Animais , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Humanos
13.
Semin Neurol ; 35(5): 506-21, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26444396

RESUMO

Patients who present to the emergency department with symptoms of acute vertigo or dizziness are frequently misdiagnosed. Missed opportunities to promptly treat dangerous strokes can result in poor clinical outcomes. Inappropriate testing and incorrect treatments for those with benign peripheral vestibular disorders leads to patient harm and unnecessary costs. Over the past decade, novel bedside approaches to diagnose patients with the acute vestibular syndrome have been developed and refined. A battery of three bedside tests of ocular motor physiology known as "HINTS" (head impulse, nystagmus, test of skew) has been shown to identify acute strokes more accurately than even magnetic resonance imaging with diffusion-weighted imaging (MRI-DWI) when applied in the early acute period by eye-movement specialists. Recent advances in lightweight, high-speed video-oculography (VOG) technology have made possible a future in which HINTS might be applied by nonspecialists in frontline care settings using portable VOG. Use of technology to measure eye movements (VOG-HINTS) to diagnose stroke in the acute vestibular syndrome is analogous to the use of electrocardiography (ECG) to diagnose myocardial infarction in acute chest pain. This "eye ECG" approach could transform care for patients with acute vertigo and dizziness around the world. In the United States alone, successful implementation would likely result in improved quality of emergency care for hundreds of thousands of peripheral vestibular patients and tens of thousands of stroke patients, as well as an estimated national health care savings of roughly $1 billion per year. In this article, the authors review the origins of the HINTS approach, empiric evidence and pathophysiologic principles supporting its use, and possible uses for the eye ECG in teleconsultation, teaching, and triage.


Assuntos
Medições dos Movimentos Oculares , Testes Imediatos , Acidente Vascular Cerebral/diagnóstico , Vertigem/diagnóstico , Humanos , Acidente Vascular Cerebral/fisiopatologia , Vertigem/fisiopatologia
14.
Clin Exp Pharmacol Physiol ; 41(5): 371-80, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24754528

RESUMO

Extracellular single neuron recording and labelling studies of primary vestibular afferents in Scarpa's ganglion have shown that guinea-pig otolithic afferents with irregular resting discharge are preferentially activated by 500 Hz bone-conducted vibration (BCV) and many also by 500 Hz air-conducted sound (ACS) at low threshold and high sensitivity. Very few afferent neurons from any semicircular canal are activated by these stimuli and then only at high intensity. Tracing the origin of the activated neurons shows that these sensitive otolithic afferents originate mainly from a specialized region, the striola, of both the utricular and saccular maculae. This same 500 Hz BCV elicits vestibular-dependent eye movements in alert guinea-pigs and in healthy humans. These stimuli evoke myogenic potentials, vestibular-evoked myogenic potentials (VEMPs), which are used to test the function of the utricular and saccular maculae in human patients. Although utricular and saccular afferents can both be activated by BCV and ACS, the differential projection of utricular and saccular afferents to different muscle groups allows for differentiation of the function of these two sensory regions. The basic neural data support the conclusion that in human patients in response to brief 500 Hz BCV delivered to Fz (the midline of the forehead at the hairline), the cervical VEMP indicates predominantly saccular function and the ocular VEMP indicates predominantly utricular function. The neural, anatomical and behavioural evidence underpins clinical tests of otolith function in humans using sound and vibration.


Assuntos
Neurônios Aferentes/fisiologia , Membrana dos Otólitos/inervação , Membrana dos Otólitos/fisiologia , Potenciais Evocados Miogênicos Vestibulares/fisiologia , Testes de Função Vestibular/métodos , Estimulação Acústica , Animais , Condução Óssea/fisiologia , Movimentos Oculares/fisiologia , Cobaias , Humanos , Reflexo Vestíbulo-Ocular/fisiologia , Sáculo e Utrículo/fisiologia , Canais Semicirculares/fisiologia , Vibração
15.
Anat Rec (Hoboken) ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965777

RESUMO

The mammalian inner ear contains the sensory organs responsible for balance (semicircular canals, utricle, and saccule) and hearing (cochlea). While these organs are functionally distinct, there exists a critical structural connection between the two: the ductus reuniens (DR). Despite its functional importance, comparative descriptions of DR morphology are limited, hindering our understanding of the evolutionary diversification of hearing and balance systems among mammals. Using virtual 3D models derived from micro-CT, we examine the morphology of the DR and its relationship to the bony labyrinth in humans compared to that in a commonly used animal model, the guinea pig. Anatomical reconstructions and univariate measurements were carried out in the software 3D Slicer. Data indicate similarities in DR morphology between humans and guinea pigs in terms of overall shape. However, there are considerable differences in relative DR length and width between humans and guinea pigs. Humans possess a relatively shorter and narrower DR but with wider openings to the saccule and cochlear duct. This results in a relatively more constricted DR lumen in humans which may differentially limit fluid transfer between the saccule and cochlea. Our results reveal previously hidden morphological diversity in the communication between the hearing and balance systems of the mammalian inner ear which may indicate alternative strategies for isolating the Organ of Corti from the peripheral vestibular system throughout mammalian evolution.

17.
Semin Neurol ; 33(3): 231-7, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24057826

RESUMO

Through selective tests of the function of the canal and otolith sense organs, it is possible to assert that patient conditions are purely otolithic and that the canals are not involved. The video head impulse test selectively tests each semicircular canal; the ocular vestibular-evoked myogenic potential to 500 Hz Fz (Fz is the location on the forehead in the midline at the hairline) bone-conducted vibration (BCV) selectively tests the utricular macula and the cervical vestibular-evoked myogenic potential to 500 Hz Fz BCV selectively tests the saccular macula. The development of new specific tests of otolith function has shown that some patients may have specific deficits of just otolithic function. In the authors' experience, patients who complain strongly of postural unsteadiness should be suspected to have otolithic deficits. They may also have vertigo and in some cases have spontaneous nystagmus of peripheral origin, even though their semicircular canal function is normal. The prognosis for such patients is good. They usually appear to regain their postural stability spontaneously over weeks (or longer), even though they still have an otolithic deficit as shown by objective tests when they are free of symptoms. It is not known what procedures may accelerate the recovery of otolith function.


Assuntos
Doenças do Labirinto/diagnóstico , Doenças do Labirinto/fisiopatologia , Membrana dos Otólitos , Potenciais Evocados Miogênicos Vestibulares , Testes de Função Vestibular/métodos , Adulto , Humanos , Masculino , Membrana dos Otólitos/fisiopatologia , Recuperação de Função Fisiológica , Canais Semicirculares/fisiopatologia , Síncope/fisiopatologia , Síncope/terapia , Vestíbulo do Labirinto
18.
Ear Hear ; 34(6): 799-805, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23732683

RESUMO

OBJECTIVES: The negative potential at 10 msec (called n10) of the ocular vestibular-evoked myogenic potential (oVEMP) recorded beneath the eyes in response to bone-conducted vibration (BCV) delivered to the skull at the midline in the hairline (Fz) is a new indicator of otolithic, and in particular utricular, function. Our aim is to find the optimum combination of frequency and rise-time for BCV stimulation, to improve the sensitivity of oVEMP testing in the clinic. DESIGN: We tested 10 healthy subjects with 6 msec tone bursts of BCV at three stimulus frequencies, 250, 500, and 750 Hz, at rise-times ranging between 0 and 2 msec. The BCV was delivered at Fz. RESULTS: The n10 response was significantly larger at the shorter rise-times, being largest at zero rise-time. In addition, we examined the effect of stimulus frequency in these same subjects by delivering 6 msec tone bursts at zero rise-time at a range of frequencies from 50 to 1200 Hz. The main effect of rise-time was significant with shorter rise-times leading to larger n10 responses and the Rise-Time × Frequency interaction was significant so that at low frequencies (100 Hz) shorter rise-times had a modest effect on n10 whereas at high frequencies (750 Hz) shorter rise-times increased n10 amplitude substantially. The main effect of frequency was also significant: The n10 response tended to be larger at lower frequency, being largest between 250 and 500 Hz. CONCLUSIONS: In summary, in this sample of healthy subjects, the most effective stimulus for eliciting oVEMP n10 to BCV at Fz was found to be a tone burst with a rise-time of 0 msec at low stimulus frequency (250 or 500 Hz).


Assuntos
Estimulação Acústica/métodos , Condução Óssea/fisiologia , Eletromiografia/métodos , Potenciais Evocados Auditivos/fisiologia , Membrana dos Otólitos/fisiologia , Sáculo e Utrículo/fisiologia , Adulto , Idoso , Análise de Variância , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
19.
Audiol Res ; 13(6): 910-928, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37987337

RESUMO

Both auditory and vestibular primary afferent neurons can be activated by sound and vibration. This review relates the differences between them to the different receptor/synaptic mechanisms of the two systems, as shown by indicators of peripheral function-cochlear and vestibular compound action potentials (cCAPs and vCAPs)-to click stimulation as recorded in animal studies. Sound- and vibration-sensitive type 1 receptors at the striola of the utricular macula are enveloped by the unique calyx afferent ending, which has three modes of synaptic transmission. Glutamate is the transmitter for both cochlear and vestibular primary afferents; however, blocking glutamate transmission has very little effect on vCAPs but greatly reduces cCAPs. We suggest that the ultrafast non-quantal synaptic mechanism called resistive coupling is the cause of the short latency vestibular afferent responses and related results-failure of transmitter blockade, masking, and temporal precision. This "ultrafast" non-quantal transmission is effectively electrical coupling that is dependent on the membrane potentials of the calyx and the type 1 receptor. The major clinical implication is that decreasing stimulus rise time increases vCAP response, corresponding to the increased VEMP response in human subjects. Short rise times are optimal in human clinical VEMP testing, whereas long rise times are mandatory for audiometric threshold testing.

20.
Sci Rep ; 13(1): 4840, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36964237

RESUMO

Our sense of balance is among the most central of our sensory systems, particularly in the evolution of human positional behavior. The peripheral vestibular system (PVS) comprises the organs responsible for this sense; the semicircular canals (detecting angular acceleration) and otolith organs (utricle and saccule; detecting linear acceleration, vibration, and head tilt). Reconstructing vestibular evolution in the human lineage, however, is problematic. In contrast to considerable study of the canals, relationships between external bone and internal membranous otolith organs (otolith system) remain largely unexplored. This limits our understanding of vestibular functional morphology. This study combines spherical harmonic modeling and landmark-based shape analyses to model the configuration of the human otolith system. Our approach serves two aims: (1) test the hypothesis that bony form covaries with internal membranous anatomy; and (2) create a 3D morphometric model visualizing bony and membranous structure. Results demonstrate significant associations between bony and membranous tissues of the otolith system. These data provide the first evidence that external structure of the human otolith system is directly related to internal anatomy, suggesting a basic biological relationship. Our results visualize this structural relationship, offering new avenues into vestibular biomechanical modeling and assessing the evolution of the human balance system.


Assuntos
Membrana dos Otólitos , Vestíbulo do Labirinto , Humanos , Canais Semicirculares , Sáculo e Utrículo , Meio Ambiente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA