Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 89(17): 8917-8923, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28748696

RESUMO

We present an experimental method including error analysis for the measurement of the density and compressibility of cells and microbeads; these being the two central material properties in ultrasound-based acoustophoretic applications such as particle separation, trapping, and up-concentration. The density of the microparticles is determined by using a neutrally buoyant selection process that involves centrifuging of microparticles suspended in different density solutions, CsCl for microbeads and Percoll for cells. The speed of sound at 3 MHz in the neutrally buoyant suspensions is measured as a function of the microparticle volume fraction, and from this the compressibility of the microparticles is inferred. Finally, from the obtained compressibility and density, the acoustic scattering coefficients and contrast factor of the microparticles are determined, and in a sensitivity analysis, the impact of the measurement errors on the computed acoustic properties is reported. The determination of these parameters and their uncertainties allow for accurate predictions of the acoustophoretic response of the microparticles. The method is validated by determining the density (0.1-1% relative uncertainty) and compressibility (1-3% relative uncertainty) of previously well-characterized polymer microbeads and subsequently applied to determine the density (0.1-1% relative uncertainty), compressibility (1% relative uncertainty), scattering coefficients, and acoustic contrast factors for nonfixed and fixed cells, such as red blood cells, white blood cells, DU-145 prostate cancer cells, MCF-7 breast cancer cells, and LU-HNSCC-25 head and neck squamous carcinoma cells in phosphate buffered saline. The results show agreement with published data obtained by other methods.


Assuntos
Eritrócitos/citologia , Leucócitos/citologia , Som , Suspensões/química , Contagem de Células , Linhagem Celular Tumoral , Humanos , Células Neoplásicas Circulantes/metabolismo , Tamanho da Partícula , Soluções/química
2.
Anal Chem ; 85(4): 2208-15, 2013 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-23331264

RESUMO

This report describes the development of elastomeric capture microparticles (ECµPs) and their use with acoustophoretic separation to perform microparticle assays via flow cytometry.We have developed simple methods to form ECµPs by cross-linking droplets of common commercially available silicone precursors in suspension followed by surface functionalization with biomolecular recognition reagents. The ECµPs are compressible particles that exhibit negative acoustic contrast in ultrasound when suspended in aqueous media, blood serum, or diluted blood. In this study, these particles have been functionalized with antibodies to bind prostate specific antigen and immunoglobulin (IgG). Specific separation of the ECµPs from blood cells is achieved by flowing them through a microfluidic acoustophoretic device that uses an ultrasonic standing wave to align the blood cells, which exhibit positive acoustic contrast, at a node in the acoustic pressure distribution while aligning the negative acoustic contrast ECµPs at the antinodes. Laminar flow of the separated particles to downstream collection ports allows for collection of the separated negative contrast (ECµPs) and positive contrast particles (cells). Separated ECµPs were analyzed via flow cytometry to demonstrate nanomolar detection for prostate specific antigen in aqueous buffer and picomolar detection for IgG in plasma and diluted blood samples. This approach has potential applications in the development of rapid assays that detect the presence of low concentrations of biomarkers in a number of biological sample types.


Assuntos
Citometria de Fluxo/métodos , Microesferas , Polímeros/química , Antígeno Prostático Específico/análise , Animais , Anticorpos Monoclonais/imunologia , Biomarcadores/análise , Biomarcadores/sangue , Dimetilpolisiloxanos/química , Elastômeros , Humanos , Imunoglobulina G/sangue , Camundongos , Técnicas Analíticas Microfluídicas , Polímeros/síntese química , Suínos
3.
J Nanobiotechnology ; 11: 22, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23809852

RESUMO

BACKGROUND: Acoustophoresis has been utilized successfully in applications including cell trapping, focusing, and purification. One current limitation of acoustophoresis for cell sorting is the reliance on the inherent physical properties of cells (e.g., compressibility, density) instead of selecting cells based upon biologically relevant surface-presenting antigens. Introducing an acoustophoretic cell sorting approach that allows biochemical specificity may overcome this limitation, thus advancing the value of acoustophoresis approaches for both the basic research and clinical fields. RESULTS: The results presented herein demonstrate the ability for negative acoustic contrast particles (NACPs) to specifically capture and transport positive acoustic contrast particles (PACPs) to the antinode of an ultrasound standing wave. Emulsification and post curing of pre-polymers, either polydimethylsiloxane (PDMS) or polyvinylmethylsiloxane (PVMS), within aqueous surfactant solution results in the formation of stable NACPs that focus onto pressure antinodes. We used either photochemical reactions with biotin-tetrafluorophenyl azide (biotin-TFPA) or end-functionalization of Pluronic F108 surfactant to biofunctionalize NACPs. These biotinylated NACPs bind specifically to streptavidin polystyrene microparticles (as cell surrogates) and transport them to the pressure antinode within an acoustofluidic chip. CONCLUSION: To the best of our knowledge, this is the first demonstration of using NACPs as carriers for transport of PACPs in an ultrasound standing wave. By using different silicones (i.e., PDMS, PVMS) and curing chemistries, we demonstrate versatility of silicone materials for NACPs and advance the understanding of useful approaches for preparing NACPs. This bioseparation scheme holds potential for applications requiring rapid, continuous separations such as sorting and analysis of cells and biomolecules.


Assuntos
Acústica , Separação Celular/métodos , Polímeros/química , Silicones/química , Azidas/química , Dimetilpolisiloxanos/química , Elastômeros , Filtração , Fluorescência , Tamanho da Partícula , Siloxanas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Estreptavidina/metabolismo
4.
Anal Chim Acta ; 1000: 256-264, 2018 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-29289318

RESUMO

Cancer cells display acoustic properties enabling acoustophoretic separation from white blood cells (WBCs) with 2-3 log suppression of the WBC background. However, a subset of WBCs has overlapping acoustic properties with cancer cells, which is why label-free acoustophoretic cancer cell isolation needs additional purification prior to analysis. This paper reports for the first time a proof of concept for continuous flow acoustophoretic negative selection of WBCs from cancer cells using negative acoustic contrast elastomeric particles (EPs) activated with CD45-antibodies that specifically bind to WBCs. The EP/WBC complexes align at the acoustic pressure anti-nodes along the channel walls while unbound cancer cells focus to the pressure node in the channel center, enabling continuous flow based depletion of WBC background in a cancer cell product. The method does not provide a single process solution for the CTC separation challenge, but provides an elegant part to a multi-step process by further reducing the WBC background in cancer cell separation products derived from an initial step of label-free acoustophoresis. We report the recorded performance of the negative selection immuno-acoustophoretic WBC depletion and cancer cell recovery. To eliminate the negative impact of the separation due to the known problems of aggregation of negative acoustic contrast particles along the sidewalls of the acoustophoresis channel and to enable continuous separation of EP/WBC complexes from cancer cells, a new acoustic actuation method has been implemented where the ultrasound frequency is scanned (1.991MHz ± 100 kHz, scan rate 200 kHz ms-1). Using this frequency scanning strategy EP/WBC complexes were acoustophoretically separated from mixtures of WBCs spiked with breast and prostate cancer cells (DU145 and MCF-7). An 86-fold (MCF-7) and 52-fold (DU145) reduction of WBCs in the cancer cell fractions were recorded with separation efficiencies of 98.6% (MCF-7) and 99.7% (DU145) and cancer cell recoveries of 89.8% (MCF-7) and 85.0% (DU145).


Assuntos
Acústica , Neoplasias da Mama/patologia , Separação Celular , Meios de Contraste/química , Leucócitos/citologia , Polímeros/química , Neoplasias da Próstata/patologia , Elastômeros , Feminino , Humanos , Imuno-Histoquímica , Células MCF-7 , Masculino , Oxirredução , Tamanho da Partícula , Células Tumorais Cultivadas
5.
Biotechnol Appl Biochem ; 43(Pt 2): 85-91, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16218906

RESUMO

Processes for micropatterning protein arrays on inorganic substrates have gained attention in the development of biosensors and clinical diagnostics. This study demonstrates a chemically selective method based on photolithographic deposition of gold patterns with the subsequent attachment of functionalized alkanethiols via molecular self-assembly. Selective capping of carboxy groups on alkanethiols by N-hydroxysuccinimide esters allowed the deposition of methoxypoly(ethylene glycol) silane as a blocking agent on unpatterned regions. Carboxylates were used to couple a form of avidin to create a microarray of protein. This microarray was successfully probed with biotinylated quantum dots. In-process characterization methods included grazing-angle Fourier-transform IR spectroscopy, ellipsometry, contact-angle goniometry, atomic-force microscopy and fluorescence microscopy.


Assuntos
Avidina/química , Análise Serial de Proteínas , Silício/química , Compostos de Sulfidrila/química , Biotinilação , Ouro/química , Microscopia de Força Atômica , Polietilenoglicóis/química , Espectroscopia de Infravermelho com Transformada de Fourier , Succinimidas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA