Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34035174

RESUMO

Heterochromatin assembly requires methylation of histone H3 lysine 9 (H3K9me) and serves as a paradigm for understanding the importance of histone modifications in epigenetic genome control. Heterochromatin is nucleated at specific genomic sites and spreads across extended chromosomal domains to promote gene silencing. Moreover, heterochromatic structures can be epigenetically inherited in a self-templating manner, which is critical for stable gene repression. The spreading and inheritance of heterochromatin are believed to be dependent on preexisting H3K9 tri-methylation (H3K9me3), which is recognized by the histone methyltransferase Clr4/Suv39h via its chromodomain, to promote further deposition of H3K9me. However, the process involving the coupling of the "read" and "write" capabilities of histone methyltransferases is poorly understood. From an unbiased genetic screen, we characterize a dominant-negative mutation in histone H3 (H3G13D) that impairs the propagation of endogenous and ectopic heterochromatin domains in the fission yeast genome. H3G13D blocks methylation of H3K9 by the Clr4/Suv39h methyltransferase and acts in a dosage-dependent manner to interfere with the spreading and maintenance of heterochromatin. Our analyses show that the incorporation of unmethylatable histone H3G13D into chromatin decreases H3K9me3 density and thereby compromises the read-write capability of Clr4/Suv39h. Consistently, enhancing the affinity of Clr4/Suv39h for methylated H3K9 is sufficient to overcome the defects in heterochromatin assembly caused by H3G13D Our work directly implicates methylated histones in the transmission of epigenetic memory and shows that a critical density threshold of H3K9me3 is required to promote epigenetic inheritance of heterochromatin through the read-write mechanism.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Epigênese Genética , Heterocromatina/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Metilação , Schizosaccharomyces , Complexo Shelterina/metabolismo
2.
J Mol Biol ; 435(19): 168242, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37619707

RESUMO

The highly positively charged and intrinsically disordered H1 C-terminal domain (CTD) undergoes extensive condensation upon binding to nucleosomes, and stabilizes nucleosomes and higher-order chromatin structures but its interactions in chromatin are not well defined. Using single-molecule FRET we found that about half of the H1 CTDs in H1-nucleosome complexes exhibit well-defined FRET values indicative of distinct, static conformations, while the remainder of the population exhibits exchange between multiple defined FRET structures. Moreover, crosslinking studies indicate that the first 30 residues of the H1 CTD participate in relatively localized contacts with the first ∼25 bp of linker DNA, and that two separate regions in the CTD contribute to H1-dependent organization of linker DNA. Finally, we show that acetylation mimetics within the histone H3 tail markedly reduce the overall extent of H1 CTD condensation and significantly increase the fraction of H1 CTDs undergoing dynamic exchange between FRET states. Our results indicate the nucleosome-bound H1 CTD adopts loosely defined structures that exhibit significantly enhanced dynamics and decondensation upon epigenetic acetylation within the H3 tail.


Assuntos
Histonas , Nucleossomos , Histonas/genética , Código das Histonas , Processamento de Proteína Pós-Traducional , Cromatina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA