Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34916285

RESUMO

Spina bifida (SB) is a debilitating birth defect caused by multiple gene and environment interactions. Though SB shows non-Mendelian inheritance, genetic factors contribute to an estimated 70% of cases. Nevertheless, identifying human mutations conferring SB risk is challenging due to its relative rarity, genetic heterogeneity, incomplete penetrance, and environmental influences that hamper genome-wide association studies approaches to untargeted discovery. Thus, SB genetic studies may suffer from population substructure and/or selection bias introduced by typical candidate gene searches. We report a population based, ancestry-matched whole-genome sequence analysis of SB genetic predisposition using a systems biology strategy to interrogate 298 case-control subject genomes (149 pairs). Genes that were enriched in likely gene disrupting (LGD), rare protein-coding variants were subjected to machine learning analysis to identify genes in which LGD variants occur with a different frequency in cases versus controls and so discriminate between these groups. Those genes with high discriminatory potential for SB significantly enriched pathways pertaining to carbon metabolism, inflammation, innate immunity, cytoskeletal regulation, and essential transcriptional regulation consistent with their having impact on the pathogenesis of human SB. Additionally, an interrogation of conserved noncoding sequences identified robust variant enrichment in regulatory regions of several transcription factors critical to embryonic development. This genome-wide perspective offers an effective approach to the interrogation of coding and noncoding sequence variant contributions to rare complex genetic disorders.


Assuntos
Genoma Humano , Disrafismo Espinal/genética , Estudos de Casos e Controles , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Biologia de Sistemas , Fatores de Transcrição/genética
3.
PLoS Genet ; 10(3): e1004240, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24651406

RESUMO

Hybrid incompatibilities (HIs) cause reproductive isolation between species and thus contribute to speciation. Several HI genes encode adaptively evolving proteins that localize to or interact with heterochromatin, suggesting that HIs may result from co-evolution with rapidly evolving heterochromatic DNA. Little is known, however, about the intraspecific function of these HI genes, the specific sequences they interact with, or the evolutionary forces that drive their divergence. The genes Hmr and Lhr genetically interact to cause hybrid lethality between Drosophila melanogaster and D. simulans, yet mutations in both genes are viable. Here, we report that Hmr and Lhr encode proteins that form a heterochromatic complex with Heterochromatin Protein 1 (HP1a). Using RNA-Seq analyses we discovered that Hmr and Lhr are required to repress transcripts from satellite DNAs and many families of transposable elements (TEs). By comparing Hmr and Lhr function between D. melanogaster and D. simulans we identify several satellite DNAs and TEs that are differentially regulated between the species. Hmr and Lhr mutations also cause massive overexpression of telomeric TEs and significant telomere lengthening. Hmr and Lhr therefore regulate three types of heterochromatic sequences that are responsible for the significant differences in genome size and structure between D. melanogaster and D. simulans and have high potential to cause genetic conflicts with host fitness. We further find that many TEs are overexpressed in hybrids but that those specifically mis-expressed in lethal hybrids do not closely correlate with Hmr function. Our results therefore argue that adaptive divergence of heterochromatin proteins in response to repetitive DNAs is an important underlying force driving the evolution of hybrid incompatibility genes, but that hybrid lethality likely results from novel epistatic genetic interactions that are distinct to the hybrid background.


Assuntos
Proteínas de Drosophila/genética , Heterocromatina/genética , Isolamento Reprodutivo , Animais , Evolução Biológica , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/genética , Elementos de DNA Transponíveis/genética , DNA Satélite/genética , Drosophila melanogaster , Genes Letais , Hibridização Genética
4.
Development ; 136(18): 3057-65, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19675128

RESUMO

Specification of the dorsoventral axis in Xenopus depends on rearrangements of the egg vegetal cortex following fertilization, concomitant with activation of Wnt/beta-catenin signaling. How these processes are tied together is not clear, but RNAs localized to the vegetal cortex during oogenesis are known to be essential. Despite their importance, few vegetally localized RNAs have been examined in detail. In this study, we describe the identification of a novel localized mRNA, trim36, and characterize its function through maternal loss-of-function experiments. We find that trim36 is expressed in the germ plasm and encodes a ubiquitin ligase of the Tripartite motif-containing (Trim) family. Depletion of maternal trim36 using antisense oligonucleotides results in ventralized embryos and reduced organizer gene expression. We show that injection of wnt11 mRNA rescues this effect, suggesting that Trim36 functions upstream of Wnt/beta-catenin activation. We further find that vegetal microtubule polymerization and cortical rotation are disrupted in trim36-depleted embryos, in a manner dependent on Trim36 ubiquitin ligase activity. Additionally, these embryos can be rescued by tipping the eggs 90 degrees relative to the animal-vegetal axis. Taken together, our results suggest a role for Trim36 in controlling the stability of proteins regulating microtubule polymerization during cortical rotation, and subsequently axis formation.


Assuntos
Proteínas de Transporte/metabolismo , Morfogênese/fisiologia , Oócitos , Proteínas de Xenopus/metabolismo , Xenopus laevis , Animais , Biomarcadores/metabolismo , Proteínas de Transporte/genética , Embrião não Mamífero/anatomia & histologia , Embrião não Mamífero/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Gravitação , Peptídeos e Proteínas de Sinalização Intracelular , Microtúbulos/metabolismo , Oócitos/citologia , Oócitos/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/fisiologia , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Proteínas de Xenopus/genética , Xenopus laevis/anatomia & histologia , Xenopus laevis/embriologia , beta Catenina/genética , beta Catenina/metabolismo
5.
Dev Dyn ; 239(6): 1838-48, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20503379

RESUMO

RNA localization is a common mechanism for regulating cell structure and function. Localized RNAs in Xenopus oocytes are critical for early development, including germline specification by the germ plasm. Despite the importance of these localized RNAs, only approximately 25 have been identified and fewer are functionally characterized. Using microarrays, we identified a large set of localized RNAs from the vegetal cortex. Overall, our results indicate a minimum of 275 localized RNAs in oocytes, or 2-3% of maternal transcripts, which are in general agreement with previous findings. We further validated vegetal localization for 24 candidates and further characterized three genes expressed in the germ plasm. We identified novel germ plasm expression for reticulon 3.1, exd2 (a novel exonuclease-domain encoding gene), and a putative noncoding RNA. Further analysis of these and other localized RNAs will likely identify new functions of germ plasm and facilitate the identification of cis-acting RNA localization elements.


Assuntos
Citoplasma/metabolismo , RNA/genética , RNA/metabolismo , Animais , Feminino , Análise em Microsséries , Oócitos/metabolismo , Oócitos/fisiologia , Óvulo/metabolismo , RNA não Traduzido/metabolismo , Xenopus/genética , Xenopus/metabolismo , Xenopus laevis/genética , Xenopus laevis/metabolismo
6.
Dev Biol ; 325(1): 249-62, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19013452

RESUMO

Early in the development of animal embryos, superficial cells of the blastula form a distinct lineage and adopt an epithelial morphology. In different animals, the fate of these primary superficial epithelial (PSE) cells varies, and it is unclear whether pathways governing segregation of blastomeres into the PSE lineage are conserved. Mutations in the gene encoding Interferon Regulatory Factor 6 (IRF6) are associated with syndromic and non-syndromic forms of cleft lip and palate, consistent with a role for Irf6 in development of oral epithelia, and mouse Irf6 targeted null mutant embryos display abnormal differentiation of oral epithelia and skin. In Danio rerio (zebrafish) and Xenopus laevis (African clawed frog) embryos, zygotic irf6 transcripts are present in many epithelial tissues including the presumptive PSE cells and maternal irf6 transcripts are present throughout all cells at the blastula stage. Injection of antisense oligonucleotides with ability to disrupt translation of irf6 transcripts caused little or no effect on development. By contrast, injection of RNA encoding a putative dominant negative Irf6 caused epiboly arrest, loss of gene expression characteristic of the EVL, and rupture of the embryo at late gastrula stage. The dominant negative Irf6 disrupted EVL gene expression in a cell autonomous fashion. These results suggest that Irf6 translated in the oocyte or unfertilized egg suffices for early development. Supporting the importance of maternal Irf6, we show that depletion of maternal irf6 transcripts in X. laevis embryos leads to gastrulation defects and rupture of the superficial epithelium. These experiments reveal a conserved role for maternally-encoded Irf6 in differentiation of a simple epithelium in X. laevis and D. rerio. This epithelium constitutes a novel model tissue in which to explore the Irf6 regulatory pathway.


Assuntos
Diferenciação Celular , Embrião não Mamífero/citologia , Epitélio/embriologia , Fatores Reguladores de Interferon/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus/embriologia , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Biomarcadores/metabolismo , Padronização Corporal , Sobrevivência Celular , Embrião não Mamífero/metabolismo , Epitélio/metabolismo , Feminino , Gastrulação , Regulação da Expressão Gênica no Desenvolvimento , Genes Dominantes , Camadas Germinativas/citologia , Camadas Germinativas/metabolismo , Hibridização In Situ , Fatores Reguladores de Interferon/química , Fatores Reguladores de Interferon/genética , Estrutura Terciária de Proteína , Xenopus/genética , Proteínas de Xenopus/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/genética
7.
Cell Syst ; 8(5): 446-455.e8, 2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-31078526

RESUMO

Recent studies have shown that mutations at non-coding elements, such as promoters and enhancers, can act as cancer drivers. However, an important class of non-coding elements, namely CTCF insulators, has been overlooked in the previous driver analyses. We used insulator annotations from CTCF and cohesin ChIA-PET and analyzed somatic mutations in 1,962 whole genomes from 21 cancer types. Using the heterogeneous patterns of transcription-factor-motif disruption, functional impact, and recurrence of mutations, we developed a computational method that revealed 21 insulators showing signals of positive selection. In particular, mutations in an insulator in multiple cancer types, including 16% of melanoma samples, are associated with TGFB1 up-regulation. Using CRISPR-Cas9, we find that alterations at two of the most frequently mutated regions in this insulator increase cell growth by 40%-50%, supporting the role of this boundary element as a cancer driver. Thus, our study reveals several CTCF insulators as putative cancer drivers.


Assuntos
Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Genoma Humano , Humanos , Mutação , Neoplasias/genética , Neoplasias/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas Repressoras/genética , Coesinas
8.
Curr Opin Syst Biol ; 1: 9-15, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30370373

RESUMO

The vast majority of somatic variants in cancer genomes occur in non-coding regions. However, progress in cancer genomics in the past decade has been mostly focused on coding regions, largely due to the prohibitive cost of whole genome sequencing (WGS). Recent technological advances have decreased sequencing costs leading to the current acquisition of thousands of tumor whole genome sequences which has led to a hunt for non-coding drivers. The most well characterized regulatory drivers are in the TERT promoter and have been identified in many cancer types. Despite the larger fraction of somatic variants occurring in non-coding regions, the number of non-coding drivers identified so far is much less than the number of coding region drivers. Here we discuss reasons that may hinder the detection of non-coding drivers. We also examine the relationship between non-coding genetic variation and epigenetic state in tumor cells and assert the need for additional epigenetic data sets as a prerequisite for understanding the rewiring of regulatory networks in cancer.

9.
G3 (Bethesda) ; 4(12): 2451-60, 2014 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-25352540

RESUMO

Hybrid sons between Drosophila melanogaster females and D. simulans males die as 3rd instar larvae. Two genes, D. melanogaster Hybrid male rescue (Hmr) on the X chromosome, and D. simulans Lethal hybrid rescue (Lhr) on chromosome II, interact to cause this lethality. Loss-of-function mutations in either gene suppress lethality, but several pieces of evidence suggest that additional factors are required for hybrid lethality. Here we screen the D. melanogaster autosomal genome by using the Bloomington Stock Center Deficiency kit to search for additional regions that can rescue hybrid male lethality. Our screen is designed to identify putative hybrid incompatibility (HI) genes similar to Hmr and Lhr which, when removed, are dominant suppressors of lethality. After screening 89% of the autosomal genome, we found no regions that rescue males to the adult stage. We did, however, identify several regions that rescue up to 13% of males to the pharate adult stage. This weak rescue suggests the presence of multiple minor-effect HI loci, but we were unable to map these loci to high resolution, presumably because weak rescue can be masked by genetic background effects. We attempted to test one candidate, the dosage compensation gene male specific lethal-3 (msl-3), by using RNA interference with short hairpin microRNA constructs targeted specifically against D. simulans msl-3 but failed to achieve knockdown, in part due to off-target effects. We conclude that the D. melanogaster autosomal genome likely does not contain additional major-effect HI loci. We also show that Hmr is insufficient to fully account for the lethality associated with the D. melanogaster X chromosome, suggesting that additional X-linked genes contribute to hybrid lethality.


Assuntos
Drosophila melanogaster/genética , Genoma , Hibridização Genética , Animais , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Feminino , Genes Ligados ao Cromossomo X , Loci Gênicos , Larva/genética , Masculino , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Cromossomo X
10.
Dev Dyn ; 237(10): 2862-73, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18816846

RESUMO

In Xenopus, the maternal transcription factor VegT is necessary and sufficient to initiate the expression of nodal-related genes, which are central to many aspects of early development. However, little is known about regulation of VegT activity. Using maternal loss-of-function experiments, we show that the maternal homeoprotein, Tgif1, antagonizes VegT and plays a central role in anteroposterior patterning by negatively regulating a subset of nodal-related genes. Depletion of Tgif1 causes the anteriorization of embryos and the up-regulation of nodal paralogues nr5 and nr6. Furthermore, Tgif1 inhibits activation of nr5 by VegT in a manner that requires a C-terminal Sin3 corepressor-interacting domain. Tgif1 has been implicated in the transcriptional corepression of transforming growth factor-beta (TGFbeta) and retinoid signaling. However, we show that Tgif1 does not inhibit these pathways in early development. These results identify an essential role for Tgif1 in the control of nodal expression and provide insight into Tgif1 function and mechanisms controlling VegT activity.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Homeodomínio/metabolismo , Mães , Proteína Nodal/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriologia , Xenopus laevis/metabolismo , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Feminino , Deleção de Genes , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/genética , Humanos , Dados de Sequência Molecular , Proteína Nodal/genética , RNA Mensageiro/genética , Retinoides/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Proteína Smad2/genética , Proteína Smad2/metabolismo , Proteínas de Xenopus/química , Proteínas de Xenopus/deficiência , Proteínas de Xenopus/genética , Xenopus laevis/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA