Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Tree Physiol ; 25(7): 813-23, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15870051

RESUMO

We modeled the effects of climate change and two forest management scenarios on wood production and forest carbon balance in French forests using process-based models of forest growth. We combined data from the national forest inventory and soil network survey, which were aggregated over a 50 x 50-km grid, i.e., the spatial resolution of the climate scenario data. We predicted and analyzed the climate impact on potential forest production over the period 1960-2100. All models predicted a slight increase in potential forest yield until 2030-2050, followed by a plateau or a decline around 2070-2100, with overall, a greater increase in yield in northern France than in the south. Gross and net primary productivities were more negatively affected by soil water and atmospheric water vapor saturation deficits in western France because of a more pronounced shift in seasonal rainfall from summer to winter. The rotation-averaged values of carbon flux and production for different forest management options were estimated during four years (1980, 2015, 2045 and 2080). Predictions were made using a two-dimensional matrix covering the range of local soil and climate conditions. The changes in ecosystem fluxes and forest production were explained by the counterbalancing effect of rising CO2 concentration and increasing water deficit. The effect of climate change decreased with rotation length from short rotations with high production rates and low standing biomasses to long rotations with low productivities and greater standing biomasses. Climate effects on productivity, both negative and positive, were greatest on high fertility sites. Forest productivity in northern France was enhanced by climate change, increasingly from west to east, whereas in the southwestern Atlantic region, productivity was reduced by climate change to an increasing degree from west to east.


Assuntos
Efeito Estufa , Modelos Biológicos , Árvores/crescimento & desenvolvimento , Biomassa , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Simulação por Computador , Ecossistema , Agricultura Florestal , França , Árvores/anatomia & histologia , Árvores/fisiologia , Água/metabolismo , Madeira/anatomia & histologia , Madeira/crescimento & desenvolvimento , Madeira/fisiologia
2.
Nat Commun ; 6: 10014, 2015 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-26658608

RESUMO

Ambitious climate change mitigation plans call for a significant increase in the use of renewables, which could, however, make the supply system more vulnerable to climate variability and changes. Here we evaluate climate change impacts on solar photovoltaic (PV) power in Europe using the recent EURO-CORDEX ensemble of high-resolution climate projections together with a PV power production model and assuming a well-developed European PV power fleet. Results indicate that the alteration of solar PV supply by the end of this century compared with the estimations made under current climate conditions should be in the range (-14%;+2%), with the largest decreases in Northern countries. Temporal stability of power generation does not appear as strongly affected in future climate scenarios either, even showing a slight positive trend in Southern countries. Therefore, despite small decreases in production expected in some parts of Europe, climate change is unlikely to threaten the European PV sector.

3.
C R Biol ; 333(8): 622-30, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20688283

RESUMO

Long-term vegetation studies are needed to better predict the impact of future climate change on vegetation structure and distribution. According to the IPCC scenario, the Mediterranean region is expected to undergo significant climatic variability over the course of this century. Cedrus libani (A. Rich), in particular, is currently distributed in limited areas in the Eastern Mediterranean region, which are expected to be affected by such climate change. In order to predict the impact of future global warming, we have used fossil pollen data and model simulations. Palaeobotanical data show that C. libani has been affected by both climate change and human activities. Populations of C. libani survived in refugial zones when climatic conditions were less favourable and its range extended during periods of more suitable climate conditions. Simulations of its future geographical distribution for the year 2100 using a dynamic vegetation model show that only three areas from Mount Lebanon may allow its survival. These results extrapolated for cedar forests for the entire Eastern Mediterranean region show that forests in Syria are also threatened by future global warming. In southern Turkey, cedar forests seem to be less threatened. These results are expected to help in the long-term conservation of cedar forests in the Near East.


Assuntos
Cedrus/fisiologia , Biodiversidade , Dióxido de Carbono , Clima , Simulação por Computador , Aquecimento Global , Atividades Humanas , Líbano , Modelos Estatísticos , Pólen/química , Síria , Temperatura , Árvores , Turquia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA