Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Foods ; 11(7)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35406987

RESUMO

Kefir beverage is a probiotic food associated with health benefits, containing probiotic microorganisms and biomolecules produced during fermentation. The microbial composition of these beverages varies among countries, geographical regions, and the substrates, therefore, the characterization of kefir beverages is of great relevance in understanding their potential health-promoting and biotechnological applications. Therefore, this study presents the metagenomic and functional characterization of two Chilean kefir beverages, K02 and K03, through shotgun and amplicon-based metagenomic, microbiological, chemical, and biochemical studies. Results show that both beverages' microbiota were mainly formed by Bacteria (>98%), while Eukarya represented less than 2%. Regarding Bacteria, the most abundant genera were Acetobacter (93.43% in K02 and 80.99% in K03) and Lactobacillus (5.72% in K02 and 16.75% in K03), while Kazachstania was the most abundant genus from Eukarya (42.55% and 36.08% in K02 and K03). Metagenomic analyses revealed metabolic pathways for lactose and casein assimilation, biosynthesis of health-promoting biomolecules, and clusters for antibiotic resistance, quorum sensing communication, and biofilm formation. Enzymatic activities, microbial ß-amyloids, and short-chain fatty acids (acetic acid and propionic acid) were also detected in these beverages. Likewise, both kefir beverages inhibited biofilm formation of the opportunistic pathogen Pseudomonas aeruginosa.

2.
Biochem Biophys Res Commun ; 369(2): 761-6, 2008 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-18313400

RESUMO

Fractionation of a petroleum ether extract of Helianthus annuus L. led to the isolation of three diterpene acids: grandiflorolic, kaurenoic and trachylobanoic acids. These compounds were studied for potential anti-inflammatory activity on the generation of inflammatory mediators in lipopolysaccharide (LPS)-activated RAW 264.7 macrophages. At non-toxic concentrations, these compounds reduced, in a concentration-dependent manner nitric oxide (NO), prostaglandin E(2) (PGE(2)) and tumor necrosis factor (TNF-alpha) production, as well as expression of inducible nitric oxide synthase (NOS-2) and cyclooxygenase-2 (COX-2). All diterpenoids displayed significant in vivo anti-inflammatory activity and suppressed the 12-O-tetradecanoylphorbol-13-acetate (TPA)-mouse ear edema. In addition, inhibition of myeloperoxidase (MPO) activity, an index of cellular infiltration, was observed. In summary, our results suggest that the inhibition of the expression of NOS-2, COX-2 and the release of inflammatory cytokines, is responsible for the anti-inflammatory effects of the diterpenoids isolated from H. annuus L. which likely contributes to the pharmacological action of sunflower.


Assuntos
Anti-Inflamatórios/administração & dosagem , Citocinas/imunologia , Diterpenos/administração & dosagem , Helianthus/metabolismo , Fatores Imunológicos/imunologia , Macrófagos/imunologia , Animais , Linhagem Celular , Relação Dose-Resposta à Radiação , Macrófagos/efeitos dos fármacos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA