RESUMO
Phosphate glasses in the system P2O5-CaO-Na2O dissolve in aqueous solutions, and their solubility can be varied by changing the glass composition. This makes them of interest for use as controlled release materials, e.g. as degradable implants, devices for the release of trace elements or as fertilizers, but in order to tailor glass solubility to meet specific requirements, we need to further our understanding of their dissolution behaviour and mechanism. The structure of P2O5-CaO-Na2O glasses (P2O5 between 55 and 35 mol%; glass structure analysed by 31P MAS NMR) changed from a network (55 mol% P2O5) to short chains (35 mol%) with decreasing phosphate content. Solubility in Tris buffer showed significant differences with phosphate content and glass structure; dissolution varied between 90% (50 mol% P2O5) and 15% (35 mol%) at 24 h. Glasses with high phosphate contents significantly lowered the pH of the solution, while glasses with low phosphate contents did not. Glasses consisting of a phosphate network dissolved by a mechanism involving P-O-P bond hydrolysis, as no Q3 groups but increasing concentrations of Q0 (orthophosphate) were found in solution by solution 31P NMR. Glasses consisting of chains, by contrast, can dissolve by hydration of entire chains, but hydrolysis also occurred, resulting in formation of Q0 and small ring structures. This occurrence of hydrolysis (and thus formation of P-OH groups, which can be deprotonated) caused the pH decrease and explains the variation in solution pH with structure.
RESUMO
Bioactive glasses, particularly Bioglass® 45S5, have been used to clinically regenerate human bone since the mid-1980s; however, they show a strong tendency to undergo crystallization upon heat treatment, which limits their range of applications. Attempts at improving their processing (by reducing their tendency to crystallize) have included increasing their silica content (and thus their network connectivity), incorporating intermediate oxides or reducing their phosphate content, all of which reduce glass bioactivity. Therefore, bioactive glasses known for their good processing (e.g. 13-93) are considerably less bioactive. Here, we investigated if the processing of 45S5 bioactive glass can be improved while maintaining its network connectivity and phosphate content. The results show that, by increasing the calcium:alkali cation ratio, partially substituting potassium for sodium (thereby making use of the mixed alkali effect) and adding small amounts of fluoride, bioactive glasses can be obtained which have a larger processing window (suggesting that they can be processed more easily, allowing for sintering of scaffolds or drawing into fibres) while degrading readily and forming apatite in aqueous solution within a few hours.