Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(12)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35743050

RESUMO

Fungal infections of the lung are an increasing problem worldwide and the search for novel therapeutic agents is a current challenge due to emerging resistance to current antimycotics. The volatile defence substance allicin is formed naturally by freshly injured garlic plants and exhibits broad antimicrobial potency. Chemically synthesised allicin was active against selected fungi upon direct contact and via the gas phase at comparable concentrations to the pharmaceutically used antimycotic amphotericin B. We investigated the suppression of fungal growth by allicin vapour and aerosols in vitro in a test rig at air flow conditions mimicking the human lung. The effect of allicin via the gas phase was enhanced by ethanol. Our results suggest that allicin is a potential candidate for development for use in antifungal therapy for lung and upper respiratory tract infections.


Assuntos
Micoses , Ácidos Sulfínicos , Dissulfetos , Humanos , Pulmão , Micoses/tratamento farmacológico , Ácidos Sulfínicos/química , Ácidos Sulfínicos/farmacologia , Ácidos Sulfínicos/uso terapêutico
2.
Clin Biomech (Bristol, Avon) ; 76: 105029, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32422391

RESUMO

BACKGROUND: Multiple drug resistance of a growing number of bacterial pathogens represents an increasing challenge in conventional curative treatments of infectious diseases. However, the development and testing of new antibiotics is associated with a high number of animal experiments. METHODS: A symmetrical parametrized lung test rig allowing the exposure of air-passage surfaces to antibiotics was designed and tested to demonstrate proof-of-principle with aerosols containing allicin, which is an antimicrobial natural product from garlic. An artificial lung surface is coated with bacteria embedded in a hydrogel and growth inhibition is visualized by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, that is reduced from colourless to the dark blue formazan in the presence of metabolically active, living cells. A nebulizer is used to generate the aerosols. FINDINGS: The results show that allicin has an antibiotic effect as an aerosol and that the deposition pattern of the active agent occurred mainly around the carinal regions. INTERPRETATION: The model represents an integral system for continuous, spatial detection of aerosol deposition and allows the analysis of bacterial behaviour and the toxicity of the active agent. Thus, the deposition of antimicrobial aerosols on the bronchial surfaces is characterized in preliminary tests without any animal experiments.


Assuntos
Pulmão/efeitos dos fármacos , Ácidos Sulfínicos/farmacologia , Aerossóis , Animais , Dissulfetos , Estudos de Viabilidade , Humanos , Pulmão/microbiologia , Ácidos Sulfínicos/química , Propriedades de Superfície
3.
Exp Ther Med ; 19(2): 1541-1549, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32010336

RESUMO

Allicin is a natural antibiotic produced by garlic as a defence against pathogens and pests. Due to the worldwide increase in antibiotic resistance, new antibiotics are desperately required. Allicin is such a candidate and is active against several multidrug-resistant (MDR) strains of human pathogens, including methicillin-resistant Staphylococcus aureus (MRSA). When administered orally, allicin is titrated out by glutathione in the cells and blood, and effective therapeutic concentrations are difficult to achieve at the site of an infection. However, in the case of lung infections, allicin can be delivered directly to pathogens via the pulmonary route. In this study, we designed and constructed an in vitro lung test rig, which allowed us to model accurately the exposure of lung air-passage surfaces to allicin and gentamicin, in order to examine the feasibility of combating lung infections by direct inhalation. A prototype test rig of lung bronchi with three bifurcations was constructed, which could be coated internally with a thin layer of bacteria-seeded agar medium. The deposition of antimicrobial aerosols on the modelled bronchial surfaces was followed in preliminary tests without the need for animal experiments. The differential sensitivity of the test bacteria to different antibiotics and the dose-dependency of inhibition was shown using the model. Furthermore, a synergistic effect of allicin vapour and ethanol in inhibiting bacterial growth was demonstrated. The modelling of the axial velocity air-flow distribution correlated with the regions indicating the inhibition of bacterial growth, demonstrating that the model has predictive value and can reduce the requirement for animal sacrifice in pre-clinical trials of novel antibiotics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA