RESUMO
The mRNA cap-binding protein, eIF4E, mediates the recognition of the mRNA 5' end and, as part of the heterotrimeric eIF4F complex, facilitates the recruitment of the ribosomal subunits to initiate eukaryotic translation. Various regulatory events involving eIF4E and a second eIF4F subunit, eIF4G, are required for proper control of translation initiation. In pathogenic trypanosomatids, six eIF4Es and five eIF4Gs have been described, several forming different eIF4F-like complexes with yet unresolved roles. EIF4E5 is one of the least known of the trypanosomatid eIF4Es and has not been characterized in Leishmania species. Here, we used immunoprecipitation assays, combined with mass-spectrometry, to identify major EIF4E5 interacting proteins in L. infantum. A constitutively expressed, HA-tagged, EIF4E5 co-precipitated mainly with EIF4G1 and binding partners previously described in Trypanosoma brucei, EIF4G1-IP, RBP43 and the 14-3-3 proteins. In contrast, no clear co-precipitation with EIF4G2, also previously reported, was observed. EIF4E5 also co-precipitated with protein kinases, possibly associated with cell-cycle regulation, selected RNA binding proteins and histones. Phosphorylated residues were identified and mapped to the Leishmania-specific C-terminal end. Mutagenesis of the tryptophan residue (W53) postulated to mediate interactions with protein partners or of a neighbouring tryptophan conserved in Leishmania (W45) did not substantially impair the identified interactions. Finally, the crystal structure of Leishmania EIF4E5 evidences remarkable differences in the eIF4G interfacing region, when compared with human eIF4E-1 and with its Trypanosoma orthologue. Mapping of its C-terminal end near the cap-binding site also imply relevant differences in cap-binding function and/or regulation.
Assuntos
Fator de Iniciação 4E em Eucariotos/química , Fator de Iniciação 4E em Eucariotos/metabolismo , Leishmania/metabolismo , Mapas de Interação de Proteínas , Proteínas de Protozoários/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Fator de Iniciação 4E em Eucariotos/genética , Humanos , Leishmania/genética , Ligação Proteica , Conformação Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Homologia de SequênciaAssuntos
Vírus da Hepatite E , Hepatite E , Doenças dos Suínos , Animais , Suínos , Vírus da Hepatite E/genética , Hepatite E/transmissão , Hepatite E/veterinária , Hepatite E/epidemiologia , Hepatite E/virologia , Doenças dos Suínos/virologia , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/transmissão , RatosRESUMO
Plague, caused by the Yersinia pestis bacterium, has several foci scattered throughout a large area from the Brazilian territory that ranges from the Northeastern State of Ceará to the Southeastern State of Minas Gerais and another separated area at the State of Rio de Janeiro. This review gathers data from plague control and surveillance programs on the occurrence and geographic distribution of rodent hosts and flea vectors in the Brazilian plague areas during the period of from 1952 to 2019. Furthermore, we discuss how the interaction between Y. pestis and some rodent host species may play a role in the disease dynamics. The absence of human cases nowadays in Brazil does not mean that it was eradicated. The dynamics of plague in Brazil and in other countries where it was introduced during the 3rd pandemic are quite alike, alternating epidemics with decades of quiescence. Hence, it remains an important epidemic disease of global concern. The existence of a large animal reservoir and competent vectors demonstrate a need for continuous surveillance to prevent new outbreaks of this disease in humans.