Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cell Physiol Biochem ; 38(2): 598-608, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26845446

RESUMO

BACKGROUND/AIMS: MicroRNAs (miRNAs) are a class of small noncoding RNAs that regulate gene expression by repressing translation or cleaving RNA transcripts in a sequence-specific manner. Downregulated microRNAs and their roles in cancer development have attracted much attention. A growing body of evidence showed that microRNA-133a (miR-133a) has inhibitory effects on cell proliferation, migration, invasion, and metastasis of osteosarcoma. METHODS: MiR-133a expression in human osteosarcoma cell lines and human normal osteoblastic cell line hFOB was investigated by real-time PCR (RT-PCR). The role of miR-133a in human osteosarcoma growth and invasion was assessed in cell lines in vitro and in vivo. Then, luciferase reporter assay validated IGF-1R as a downstream and functional target of miR-133a, and functional studies revealed that the anti-tumor effect of miR-133a was probably due to targeting and repressing of IGF-1R expression. RESULTS: MiR-133a was lower expressed in human osteosarcoma cell lines than human normal osteoblastic cell line hFOB and its effect on inhibiting proliferation, invasion and metastasis is mediated by its direct interaction with the IGF-1R. Furthermore, the tumour-suppressive function of miR-133a probably contributed to inhibiting the activation AKT and ERK signaling pathway. CONCLUSION: MiR-133a suppresses osteosarcoma progression and metastasis by targeting IGF-1R in human osteosarcoma cells, providing a novel candidate prognostic factor and a potential anti-metastasis therapeutic target in osteosarcoma.


Assuntos
Neoplasias Ósseas/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Invasividade Neoplásica/genética , Osteossarcoma/genética , Receptores de Somatomedina/genética , Neoplasias Ósseas/patologia , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação para Baixo , Humanos , Invasividade Neoplásica/patologia , Metástase Neoplásica/genética , Metástase Neoplásica/patologia , Osteossarcoma/patologia , Receptor IGF Tipo 1
2.
Biomed Pharmacother ; 131: 110541, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33152901

RESUMO

PURPOSE: Osteosarcoma is a malignant musculoskeletal tumor with early metastasis and a poor prognosis, especially in adolescents. Ganoderma lucidum (Leyss. Ex Fr.) Karst (G. lucidum), a traditional East Asian medicine, has been reported to play a critical role in antitumor and immunomodulatory activity. The aim of this study was to investigate the effects and molecular mechanisms of water extract of sporoderm-broken spores of G. lucidum (BSGWE) on osteosarcoma PD-L1 (programmed cell death-ligand 1) transcriptional regulation, efficacy enhancement, and side effect remission. METHODS: The antitumor effects on cell proliferation of BSGWE in osteosarcoma cells were detected by apoptosis flow cytometry, and the migration ability of HOS and K7M2 cells were evaluated by cell scratch assay. Potential signaling regulation of PD-L1 was detected by western blotting. To confirm the signaling pathway of BSGWE-related PD-L1 downregulation, a pho-STAT3 turnover experiment was carried out. Colivelin was administered as a pho-STAT3 activator to rescue the BSGWE-induced PD-L1 inhibition. To further study in vivo signaling, in a Balb/c osteosarcoma allograft model, tumor volume was measured using an in vivo bioluminescence imaging system. The body weight curve and tumor volume curve were analyzed to reveal the remission effects of BSGWE on PD-L1 antibody-related body weight loss and its immunomodulatory effects on the osteosarcoma and spleen. The PD-L1 expression level and expression of related transcription-factor pho-STAT3 in tumor cells and spleens were assessed by IHC analysis. RESULTS: BSGWE suppressed the proliferation and migration of osteosarcoma cells in vitro via induction of apoptosis. In addition, BSGWE downregulated PD-L1 expression and related STAT3 (signal transducers and activators of transcription) phosphorylation levels in a dose-dependent manner. Western blotting and qRT-PCR assay revealed that BSGWE downregulated PD-L1 expression by inhibiting STAT3 phosphorylation. A turnover experiment showed that colivelin administration could rescue PD-L1 inhibition via pho-STAT3 activation. BSGWE not only downregulated PD-L1 expression via the STAT3 pathway in an allograft Balb/c mouse model, but also relieved complications including weight loss and spleen atrophy in a mouse monoclonal antibody therapy model on the basis of its traditional advantages in immune enhancement. CONCLUSION: BSGWE downregulated PD-L1 expression via pho-STAT3 inhibition of protein and RNA levels. BSGWE enhanced PD-L1 antibody efficacy via phosphorylated STAT3 downregulation in vitro and in vivo. BSGWE also relieved complications of weight loss and spleen atrophy in a murine allograft osteosarcoma immune checkpoint blockade therapy model.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Antígeno B7-H1/antagonistas & inibidores , Neoplasias Ósseas/tratamento farmacológico , Osteossarcoma/tratamento farmacológico , Reishi , Animais , Anticorpos Monoclonais/efeitos adversos , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Osteossarcoma/patologia , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/metabolismo , Esporos Fúngicos , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Onco Targets Ther ; 12: 4153-4165, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31213834

RESUMO

Background: Ewing sarcoma (ES) is the second commonest primary malignant bone neoplasm. Metastatic status at diagnosis strongly predicted poor prognosis of Ewing sarcoma patients. Yet little was known about the underlying mechanism of ES metastasis. Purpose:This study intended to identify the relationship between key genes/pathways and metastasis/poor prognosis in Ewing's sarcoma patients by using bioinformatic method. Methods: In this study, multi-center sequencing data were obtained from the GEO database, including gene and miRNA expression profile and prognosis information of ES patients. Differentially expressed genes (DEGs) were identified between primary and metastasis ES samples by the GEO2R online tool. Gene ontology (Go) and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analyses of DEGs were performed. And PPI network analyses were conducted. The ES patient's prognostic information was employed for survival analysis, and the potential relationship between miRNAs and key genes was analyzed. Results: The results showed that a total of 298 and 428 DEGs were screened out in metastasis samples based on GSE17618 and GSE12102 dataset compared to primary samples respectively. The most significantly enriched KEGG pathway was the mismatch repair (MMR) pathway. MSH2, MSH6, RPA2, and RFC2 that belong to the MMR pathway were identified as key genes. Moreover, the expression of key genes was increased in metastasis samples compared with primary ones and was associated with poor event-free and overall survival of ES patients. The negative correlation of the expression level of the key genes with patients prognosis also supported by TCGA sarcoma database. Furthermore, knockdown of EWSR/FLI1 fusion in ES cell line A673 down-regulates the expression of the 4 key genes was revealed by GDS4962. Conclusion: In conclusion, the present study indicated that the key genes promote our understanding of the molecular mechanisms underlying the development of ES metastasis, and might be used as molecular targets and diagnostic biomarkers for the treatment of ES.

4.
Med Hypotheses ; 109: 111-113, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29150268

RESUMO

Challenges of repairing injuries and damage to the cartilage still remain in orthopedics. The characteristics of cartilage structure, especially avascular, make it a limited capacity of self-renewal. Articular cartilage defect or damage result from various causes will lead to degenerative osteoarthritis (OA). Surgical treatment and non-surgical treatment can temporarily alleviate symptoms to some extent but can't fundamentally restore the normal structure and function of cartilage, and therefore give rise to progressive degeneration. Autologous or allogeneic cartilage transplantation has been employed to the treatment of osteoarthritis for years. Nevertheless, the major deficiency of cartilage grafting is the inability and insufficiency to repair large cartilage defect. Implants are also unable to integrate with native tissue well. Adipose-derived stem cells (ASCs) can be easily isolated from subcutaneous fat tissues and harvest as intact cell sheets containing extracellular matrix (ECM), intercellular connect, ion channel, growth factor receptors, nexin and other important cell surface proteins by means of temperature-responsive culture dish (TCD). A cell sheet can provide a large amount of extracellular matrix, fibronectin, and cells contributing to the integration of cartilage. Decellularized extracellular matrix (DECM) of cartilage debris with excellent cell affinity and signal transduction is capable of driving cartilage homeostasis and regeneration. Appropriate decellularization process would remove cellular remnants of cartilage debris, keep the mechanical properties, and avoid the adverse immune response of allografts effectively. Micro-porous cartilage debris conduces to cell migration and angiogenesis. The cell-round shape of adipose-derived stem cells cultured in the three-dimensional (3D) system provided by hydrogel is more susceptible to chondrogenic stimulation and prevents it from fibroblast-like phenotypic conversion. We hypothesize that adipose-derived stem cell sheet encapsulated construct of micro-porous decellularized cartilage debris and hydrogel can effectively promote regeneration of cartilage defect. The construct of decellularized cartilage debris and hydrogel provide a favorable microenvironment for stem cells. Adipose-derived stem cells sheet supply fibronectin, collagen, and cells contributing to integration and regeneration of cartilage restore. Moreover, the constructs can be shaped and fabricated according to the configuration of target defect, especially in osteoarthritis, which is promising for clinical application.


Assuntos
Cartilagem/metabolismo , Técnicas de Cultura de Células , Osteoartrite/terapia , Células-Tronco/citologia , Gordura Subcutânea/citologia , Alicerces Teciduais , Adiposidade , Animais , Cartilagem/patologia , Condrócitos/citologia , Condrogênese , Colágeno/química , Matriz Extracelular/metabolismo , Fibronectinas/química , Homeostase , Hidrogéis/química , Neovascularização Patológica , Porosidade , Coelhos , Transdução de Sinais , Engenharia Tecidual/métodos , Cicatrização
5.
Cell Transplant ; 25(10): 1801-1817, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26883892

RESUMO

Bone nonunion treatments pose a challenge in orthopedics. This study investigated the joint effects of using mesenchymal stem cell (MSC) sheets with local injection of stromal cell-derived factor-1 (SDF-1) on bone formation. In vitro, we found that migration of MSCs was mediated by SDF-1 in a dose-dependent manner. Moreover, stimulation with SDF-1 had no direct effect on the proliferation or osteogenic differentiation of MSCs. Furthermore, the results indicated elevated expression levels of bone morphogenetic protein 2, alkaline phosphatase, osteocalcin, and vascular endothelial growth factor in MSC sheets compared with MSCs cultured in medium. New bone formation in fractures was evaluated by X-ray, micro-computed tomography (micro-CT), hematoxylin and eosin (H&E) staining, Safranin-O staining, and immunohistochemistry in vivo. In the rat bone fracture model, the MSC sheets transplanted into the injured site along with injection of SDF-1 showed significantly more new bone formation within the gap. Moreover, at 8 weeks, complete bone union was obtained in this group. In contrast, the control group showed nonunion of the bone. Our study suggests a new strategy involving the use of MSC sheets with a local injection of SDF-1 for hard tissue reconstruction, such as the healing of nonunions and bone defects.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Quimiocina CXCL12/farmacologia , Fraturas Ósseas/terapia , Transplante de Células-Tronco Mesenquimais , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Animais , Células da Medula Óssea/citologia , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/patologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Fraturas Ósseas/patologia , Fraturas Ósseas/veterinária , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Osteocalcina/genética , Osteocalcina/metabolismo , Ratos , Ratos Sprague-Dawley , Transcriptoma/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Microtomografia por Raio-X
6.
Biomed Rep ; 3(6): 749-757, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26623011

RESUMO

The development and application of the tissue engineering technique has shown a significant potential in regenerative medicine. However, the limitations of conventional tissue engineering methods (cell suspensions, scaffolds and/or growth factors) restrict its application in certain fields. The novel cell sheet technique can overcome such disadvantages. Cultured cells can be harvested as intact sheets without the use of proteolytic enzymes, such as trypsin or dispase, which can result in cell damage and loss of differentiated phenotypes. The cell sheet is a complete layer, which contains extracellular matrix, ion channel, growth factor receptors, nexin and other important cell surface proteins. Mesenchymal stem cells (MSCs), which have the potential for multiple differentiation, are promising candidate seed cells for tissue engineering. The MSC sheet technique may have potential in the fields of regenerative medicine and tissue engineering in general. Additionally, induced pluripotent stem cell and embryonic stem cell-derived cell sheets have been proposed for tissue regeneration. Currently, the application of cell sheet for tissue reconstruction includes: Direct recipient sites implantation, superposition of cell sheets to construct three-dimensional structure for implantation, or cell sheet combined with scaffolds. The present review discusses the progress in cell sheet techniques, particularly stem cell sheet techniques, in tissue engineering.

7.
Stem Cell Res Ther ; 6: 256, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26689714

RESUMO

BACKGROUND: Promotion of bone regeneration is important for successful repair of bony defects. This study aimed to investigate whether combining bone marrow-derived mesenchymal stem cell (BMSC) sheets with platelet-rich plasma (PRP) gel/calcium phosphate particles could promote bone formation in the femoral bone defects of rats. METHODS: The proliferation and differentiation of BMSCs or BMSC sheets cultured with calcium phosphate particles and/or PRP were investigated in in vitro. In vivo, 36 2.5 × 5 mm bone defects were randomly divided into groups and treated with either BMSCs/PRP gel, calcium phosphate particles, PRP gel/calcium phosphate particles, a BMSC sheet/calcium phosphate particles, a BMSC sheet/PRP gel/calcium phosphate particles, or were left untreated (n = 6/group). A further 15 bone defects were treated with chloromethyl-benzamidodialkylcarbocyanine (CM-Dil)-labelled BMSC sheet/PRP gel/calcium phosphate particles and observed using a small animal in vivo fluorescence imaging system to trace the implanted BMSCs at 1 day, 3 days, 7 days, 2 weeks, and 4 weeks after surgery. RESULTS: The expression of collagen type I and osteocalcin genes of BMSCs or BMSC sheets treated with PRP and calcium phosphate particles was significantly higher than that of BMSCs or BMSC sheets treated with calcium phosphate particles or the controls (P <0.05). PRP can promote gene expression of collagen III and tenomodulin by BMSCs and in BMSC sheets. The VEGF, collagen I and osteocalcin gene expression levels were higher in the BMSC sheet than in cultured BMSCs (P <0.05). Moreover, alizarin red staining quantification, ALP quantification and calcein blue fluorescence showed the osteogenic potential of BMSCs treated with PRP and calcium phosphate particles The implanted BMSCs were detectable at 1 day, 3 days, 7 days, 2 weeks and 4 weeks after surgery by a small animal in vivo fluorescence imaging system and were visualized in the defect zones by confocal microscopy. At 4 weeks after implantation, the defects treated with the BMSC sheet/PRP gel/calcium phosphate particles showed significantly more bone formation than the other five groups. CONCLUSIONS: Incorporation of an BMSC sheet into the PRP gel/calcium phosphate particles greatly promoted bone regeneration. These BMSC sheet and tissue engineering strategies offer therapeutic opportunities for promoting bone defect repair clinically.


Assuntos
Regeneração Óssea , Transplante de Células-Tronco Mesenquimais/métodos , Animais , Materiais Biocompatíveis , Fosfatos de Cálcio/administração & dosagem , Diferenciação Celular , Proliferação de Células , Colágeno/genética , Colágeno/metabolismo , Fêmur/lesões , Fêmur/metabolismo , Fêmur/patologia , Expressão Gênica , Masculino , Teste de Materiais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Osteocalcina/genética , Osteocalcina/metabolismo , Osteogênese , Plasma Rico em Plaquetas , Ratos , Ratos Sprague-Dawley , Engenharia Tecidual/métodos , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA