RESUMO
BACKGROUND: According to the last 2023 Monkeypox (Mpox) Outbreak Global Map from the Centres for Disease Control and Prevention (CDC), more than 100 countries with no Mpox infection report cases. Brazil stands out in this group and is the second country with the highest number of cases in the last outbreak. OBJECTIVE: To contribute to knowledge of the virus infection effects in a cellular model, which is important for diagnosis infections not yet included in a provider´s differential diagnosis and for developing viral inhibition strategies. METHODS: We describe a virus isolation protocol for a human clinical sample from a patient from Brazil, the viral growth in a cell model through plaque forming units (PFU) assay, reverse transcriptase polymerase chain reaction (RT-PCR) and transmission electron microscopy (TEM). FINDINGS: We follow the viral isolation in Vero cell culture from a Mpox positive clinically diagnosed sample and show the infection effects on cellular structures using a TEM. MAIN CONCLUSIONS: Understanding the impact of viral growth on cellular structures and its replication kinetics may offer better strategies for the development of new drugs with antiviral properties.
Assuntos
Mpox , Humanos , Brasil , Bioensaio , Diagnóstico Diferencial , Surtos de DoençasRESUMO
BACKGROUND: Current approaches of drug repurposing against COVID-19 have not proven overwhelmingly successful and the SARS-CoV-2 pandemic continues to cause major global mortality. SARS-CoV-2 nsp12, its RNA polymerase, shares homology in the nucleotide uptake channel with the HCV orthologue enzyme NS5B. Besides, HCV enzyme NS5A has pleiotropic activities, such as RNA binding, that are shared with various SARS-CoV-2 proteins. Thus, anti-HCV NS5B and NS5A inhibitors, like sofosbuvir and daclatasvir, respectively, could be endowed with anti-SARS-CoV-2 activity. METHODS: SARS-CoV-2-infected Vero cells, HuH-7 cells, Calu-3 cells, neural stem cells and monocytes were used to investigate the effects of daclatasvir and sofosbuvir. In silico and cell-free based assays were performed with SARS-CoV-2 RNA and nsp12 to better comprehend the mechanism of inhibition of the investigated compounds. A physiologically based pharmacokinetic model was generated to estimate daclatasvir's dose and schedule to maximize the probability of success for COVID-19. RESULTS: Daclatasvir inhibited SARS-CoV-2 replication in Vero, HuH-7 and Calu-3 cells, with potencies of 0.8, 0.6 and 1.1 µM, respectively. Although less potent than daclatasvir, sofosbuvir alone and combined with daclatasvir inhibited replication in Calu-3 cells. Sofosbuvir and daclatasvir prevented virus-induced neuronal apoptosis and release of cytokine storm-related inflammatory mediators, respectively. Sofosbuvir inhibited RNA synthesis by chain termination and daclatasvir targeted the folding of secondary RNA structures in the SARS-CoV-2 genome. Concentrations required for partial daclatasvir in vitro activity are achieved in plasma at Cmax after administration of the approved dose to humans. CONCLUSIONS: Daclatasvir, alone or in combination with sofosbuvir, at higher doses than used against HCV, may be further fostered as an anti-COVID-19 therapy.
Assuntos
COVID-19 , Preparações Farmacêuticas , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Carbamatos , Chlorocebus aethiops , Humanos , Imidazóis , Pirrolidinas , RNA Viral , SARS-CoV-2 , Sofosbuvir/farmacologia , Valina/análogos & derivados , Células VeroRESUMO
BACKGROUND According to the last 2023 Monkeypox (Mpox) Outbreak Global Map from the Centres for Disease Control and Prevention (CDC), more than 100 countries with no Mpox infection report cases. Brazil stands out in this group and is the second country with the highest number of cases in the last outbreak. OBJECTIVE To contribute to knowledge of the virus infection effects in a cellular model, which is important for diagnosis infections not yet included in a provider´s differential diagnosis and for developing viral inhibition strategies. METHODS We describe a virus isolation protocol for a human clinical sample from a patient from Brazil, the viral growth in a cell model through plaque forming units (PFU) assay, reverse transcriptase polymerase chain reaction (RT-PCR) and transmission electron microscopy (TEM). FINDINGS We follow the viral isolation in Vero cell culture from a Mpox positive clinically diagnosed sample and show the infection effects on cellular structures using a TEM. MAIN CONCLUSIONS Understanding the impact of viral growth on cellular structures and its replication kinetics may offer better strategies for the development of new drugs with antiviral properties.