Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Cell ; 177(2): 446-462.e16, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30951671

RESUMO

Poor reproducibility within and across studies arising from lack of knowledge regarding the performance of extracellular RNA (exRNA) isolation methods has hindered progress in the exRNA field. A systematic comparison of 10 exRNA isolation methods across 5 biofluids revealed marked differences in the complexity and reproducibility of the resulting small RNA-seq profiles. The relative efficiency with which each method accessed different exRNA carrier subclasses was determined by estimating the proportions of extracellular vesicle (EV)-, ribonucleoprotein (RNP)-, and high-density lipoprotein (HDL)-specific miRNA signatures in each profile. An interactive web-based application (miRDaR) was developed to help investigators select the optimal exRNA isolation method for their studies. miRDar provides comparative statistics for all expressed miRNAs or a selected subset of miRNAs in the desired biofluid for each exRNA isolation method and returns a ranked list of exRNA isolation methods prioritized by complexity, expression level, and reproducibility. These results will improve reproducibility and stimulate further progress in exRNA biomarker development.


Assuntos
Ácidos Nucleicos Livres/isolamento & purificação , MicroRNA Circulante/isolamento & purificação , RNA/isolamento & purificação , Adulto , Líquidos Corporais/química , Linhagem Celular , Vesículas Extracelulares/metabolismo , Feminino , Voluntários Saudáveis , Humanos , Masculino , MicroRNAs/isolamento & purificação , MicroRNAs/metabolismo , RNA/metabolismo , Reprodutibilidade dos Testes , Análise de Sequência de RNA/métodos
2.
Proc Natl Acad Sci U S A ; 120(38): e2310914120, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37695903

RESUMO

Extracellular vesicles (EVs) are membrane-limited organelles mediating cell-to-cell communication in health and disease. EVs are of high medical interest, but their rational use for diagnostics or therapies is restricted by our limited understanding of the molecular mechanisms governing EV biology. Here, we tested whether PDZ proteins, molecular scaffolds that support the formation, transport, and function of signal transduction complexes and that coevolved with multicellularity, may represent important EV regulators. We reveal that the PDZ proteome (ca. 150 proteins in human) establishes a discrete number of direct interactions with the tetraspanins CD9, CD63, and CD81, well-known EV constituents. Strikingly, PDZ proteins interact more extensively with syndecans (SDCs), ubiquitous membrane proteins for which we previously demonstrated an important role in EV biogenesis, loading, and turnover. Nine PDZ proteins were tested in loss-of-function studies. We document that these PDZ proteins regulate both tetraspanins and SDCs, differentially affecting their steady-state levels, subcellular localizations, metabolism, endosomal budding, and accumulations in EVs. Importantly, we also show that PDZ proteins control the levels of heparan sulfate at the cell surface that functions in EV capture. In conclusion, our study establishes that the extensive networking of SDCs, tetraspanins, and PDZ proteins contributes to EV heterogeneity and turnover, highlighting an important piece of the molecular framework governing intracellular trafficking and intercellular communication.


Assuntos
Vesículas Extracelulares , Transdução de Sinais , Humanos , Transporte Biológico , Comunicação Celular , Divisão Celular , Sindecanas , Fatores de Transcrição
3.
Circulation ; 148(5): 405-425, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37409482

RESUMO

BACKGROUND: Adeno-associated virus (AAV) has emerged as one of the best tools for cardiac gene delivery due to its cardiotropism, long-term expression, and safety. However, a significant challenge to its successful clinical use is preexisting neutralizing antibodies (NAbs), which bind to free AAVs, prevent efficient gene transduction, and reduce or negate therapeutic effects. Here we describe extracellular vesicle-encapsulated AAVs (EV-AAVs), secreted naturally by AAV-producing cells, as a superior cardiac gene delivery vector that delivers more genes and offers higher NAb resistance. METHODS: We developed a 2-step density-gradient ultracentrifugation method to isolate highly purified EV-AAVs. We compared the gene delivery and therapeutic efficacy of EV-AAVs with an equal titer of free AAVs in the presence of NAbs, both in vitro and in vivo. In addition, we investigated the mechanism of EV-AAV uptake in human left ventricular and human induced pluripotent stem cell-derived cardiomyocytes in vitro and mouse models in vivo using a combination of biochemical techniques, flow cytometry, and immunofluorescence imaging. RESULTS: Using cardiotropic AAV serotypes 6 and 9 and several reporter constructs, we demonstrated that EV-AAVs deliver significantly higher quantities of genes than AAVs in the presence of NAbs, both to human left ventricular and human induced pluripotent stem cell-derived cardiomyocytes in vitro and to mouse hearts in vivo. Intramyocardial delivery of EV-AAV9-sarcoplasmic reticulum calcium ATPase 2a to infarcted hearts in preimmunized mice significantly improved ejection fraction and fractional shortening compared with AAV9-sarcoplasmic reticulum calcium ATPase 2a delivery. These data validated NAb evasion by and therapeutic efficacy of EV-AAV9 vectors. Trafficking studies using human induced pluripotent stem cell-derived cells in vitro and mouse hearts in vivo showed significantly higher expression of EV-AAV6/9-delivered genes in cardiomyocytes compared with noncardiomyocytes, even with comparable cellular uptake. Using cellular subfraction analyses and pH-sensitive dyes, we discovered that EV-AAVs were internalized into acidic endosomal compartments of cardiomyocytes for releasing and acidifying AAVs for their nuclear uptake. CONCLUSIONS: Together, using 5 different in vitro and in vivo model systems, we demonstrate significantly higher potency and therapeutic efficacy of EV-AAV vectors compared with free AAVs in the presence of NAbs. These results establish the potential of EV-AAV vectors as a gene delivery tool to treat heart failure.


Assuntos
Vesículas Extracelulares , Células-Tronco Pluripotentes Induzidas , Humanos , Camundongos , Animais , Dependovirus/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Vetores Genéticos , Células-Tronco Pluripotentes Induzidas/metabolismo , Anticorpos Neutralizantes , Vesículas Extracelulares/metabolismo
4.
J Biol Chem ; 298(10): 102394, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35988652

RESUMO

Exosomes are small extracellular vesicles of ∼30 to 150 nm that are secreted by all cells, abundant in all biofluids, and play important roles in health and disease. However, details about the mechanism of exosome biogenesis are unclear. Here, we carried out a cargo-based analysis of exosome cargo protein biogenesis in which we identified the most highly enriched exosomal cargo proteins and then followed their biogenesis, trafficking, and exosomal secretion to test different hypotheses for how cells make exosomes. We show that exosome cargo proteins bud from cells (i) in exosome-sized vesicles regardless of whether they are localized to plasma or endosome membranes, (ii) ∼5-fold more efficiently when localized to the plasma membrane, (iii) ∼5-fold less efficiently when targeted to the endosome membrane, (iv) by a stochastic process that leads to ∼100-fold differences in their abundance from one exosome to another, and (v) independently of small GTPase Rab27a, the ESCRT complex-associated protein Alix, or the cargo protein CD63. Taken together, our results demonstrate that cells use a shared, stochastic mechanism to bud exosome cargoes along the spectrum of plasma and endosome membranes and far more efficiently from the plasma membrane than the endosome. Our observations also indicate that the pronounced variation in content between different exosome-sized vesicles is an inevitable consequence of a stochastic mechanism of small vesicle biogenesis, that the origin membrane of exosome-sized extracellular vesicles simply cannot be determined, and that most of what we currently know about exosomes has likely come from studies of plasma membrane-derived vesicles.


Assuntos
Exossomos , Proteínas de Transporte Vesicular , Endossomos/metabolismo , Exossomos/metabolismo , Membranas Intracelulares/metabolismo , Humanos , Proteínas de Transporte Vesicular/metabolismo
5.
Sensors (Basel) ; 21(8)2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918613

RESUMO

Extracellular vesicles (EVs) have attracted significant attention as impactful diagnostic biomarkers, since their properties are closely related to specific clinical conditions. However, designing experiments that involve EVs phenotyping is usually highly challenging and time-consuming, due to laborious optimization steps that require very long or even overnight incubation durations. In this work, we demonstrate label-free, real-time detection, and phenotyping of extracellular vesicles binding to a multiplexed surface. With the ability for label-free kinetic binding measurements using the Interferometric Reflectance Imaging Sensor (IRIS) in a microfluidic chamber, we successfully optimize the capture reaction by tuning various assay conditions (incubation time, flow conditions, surface probe density, and specificity). A single (less than 1 h) experiment allows for characterization of binding affinities of the EVs to multiplexed probes. We demonstrate kinetic characterization of 18 different probe conditions, namely three different antibodies, each spotted at six different concentrations, simultaneously. The affinity characterization is then analyzed through a model that considers the complexity of multivalent binding of large structures to a carpet of probes and therefore introduces a combination of fast and slow association and dissociation parameters. Additionally, our results confirm higher affinity of EVs to aCD81 with respect to aCD9 and aCD63. Single-vesicle imaging measurements corroborate our findings, as well as confirming the EVs nature of the captured particles through fluorescence staining of the EVs membrane and cargo.


Assuntos
Vesículas Extracelulares , Anticorpos , Interferometria , Cinética , Coloração e Rotulagem
6.
Genesis ; 58(7): e23369, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32543746

RESUMO

Extracellular vesicles (EVs) are abundant, lipid-enclosed vectors that contain nucleic acids and proteins, they can be secreted from donor cells and freely circulate, and they can be engulfed by recipient cells thus enabling systemic communication between heterotypic cell types. However, genetic tools for labeling, isolating, and auditing cell type-specific EVs in vivo, without prior in vitro manipulation, are lacking. We have used CRISPR-Cas9-mediated genome editing to generate mice bearing a CD63-emGFPloxP/stop/loxP knock-in cassette that enables the specific labeling of circulating CD63+ vesicles from any cell type when crossed with lineage-specific Cre recombinase driver mice. As proof-of-principle, we have crossed these mice with Cdh5-CreERT2 mice to generate CD63emGFP+ vasculature. Using these mice, we show that developing vasculature is marked with emerald GFP (emGFP) following tamoxifen administration to pregnant females. In adult mice, quiescent vasculature and angiogenic vasculature (in tumors) is also marked with emGFP. Moreover, whole plasma-purified EVs contain a subpopulation of emGFP+ vesicles that are derived from the endothelium, co-express additional EV (e.g., CD9 and CD81) and endothelial cell (e.g., CD105) markers, and they harbor specific miRNAs (e.g., miR-126, miR-30c, and miR-125b). This new mouse strain should be a useful genetic tool for generating cell type-specific, CD63+ EVs that freely circulate in serum and can subsequently be isolated and characterized using standard methodologies.


Assuntos
Vesículas Extracelulares/metabolismo , Técnicas de Introdução de Genes/métodos , Tetraspanina 30/genética , Animais , Sistemas CRISPR-Cas , Células Cultivadas , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Integrases/genética , Integrases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Tetraspanina 30/metabolismo
8.
Anal Chem ; 87(20): 10505-12, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26378807

RESUMO

Here, we describe the use of DNA-conjugated antibodies for rapid and sensitive detection of whole viruses using a single-particle interferometric reflectance imaging sensor (SP-IRIS), a simple, label-free biosensor capable of imaging individual nanoparticles. First, we characterize the elevation of the antibodies conjugated to a DNA sequence on a three-dimensional (3-D) polymeric surface using a fluorescence axial localization technique, spectral self-interference fluorescence microscopy (SSFM). Our results indicate that using DNA linkers results in significant elevation of the antibodies on the 3-D polymeric surface. We subsequently show the specific detection of pseudotyped vesicular stomatitis virus (VSV) as a model virus on SP-IRIS platform. We demonstrate that DNA-conjugated antibodies improve the capture efficiency by achieving the maximal virus capture for an antibody density as low as 0.72 ng/mm(2), whereas for unmodified antibody, the optimal virus capture requires six times greater antibody density on the sensor surface. We also show that using DNA conjugated anti-EBOV GP (Ebola virus glycoprotein) improves the sensitivity of EBOV-GP carrying VSV detection compared to directly immobilized antibodies. Furthermore, utilizing a DNA surface for conversion to an antibody array offers an easier manufacturing process by replacing the antibody printing step with DNA printing. The DNA-directed immobilization technique also has the added advantages of programmable sensor surface generation based on the need and resistance to high temperatures required for microfluidic device fabrication. These capabilities improve the existing SP-IRIS technology, resulting in a more robust and versatile platform, ideal for point-of-care diagnostics applications.


Assuntos
Anticorpos Imobilizados/química , Técnicas Biossensoriais , Sondas de DNA/química , DNA/química , Vesiculovirus/isolamento & purificação , Técnicas Biossensoriais/instrumentação , Microscopia de Fluorescência/instrumentação , Vesiculovirus/patogenicidade
9.
Analyst ; 139(1): 59-65, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24195102

RESUMO

Self-aggregation of amyloid-ß (Aß) plays an important role in the pathogenesis of Alzheimer's disease (AD). Small molecule inhibitors of Aß fibril formation reduce the Aß-mediated neurotocixity. In this report, the interaction of amyloid-ß (Aß) with well-described modulators, (-)epigallocatechin-3-gallate (EGCG) and Zn(ii), was detected using a LED-based interferometric reflectance imaging sensor (LED-IRIS) in a high-throughput and real-time format. Nucleation-based fibril growth strategy was employed, as the "seeds" of Aß were prepared in the presence of EGCG and Zn(ii). The seeds were then covalently immobilized on the chip surface. Using microfluidics, Aß oligomers were exposed onto the seeds resulting in the elongation of fibrils, which was detected as the increase in the spot height. Monitoring the changes on the chip surface enabled to detect the efficacy of modulators to inhibit or facilitate the growth of Aß fibrils. The proof-of-concept study reported here introduces a novel platform to facilitate the screening of small molecules towards the discovery of promising AD therapeutics.


Assuntos
Peptídeos beta-Amiloides/análise , Técnicas Biossensoriais/métodos , Ensaios de Triagem em Larga Escala/métodos , Luz , Fragmentos de Peptídeos/análise , Técnicas Biossensoriais/instrumentação , Ensaios de Triagem em Larga Escala/instrumentação , Humanos , Interferometria/métodos
10.
Analyst ; 139(24): 6440-9, 2014 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-25340741

RESUMO

Quantitative determination of the density and conformation of DNA molecules tethered to the surface can help optimize and understand DNA nanosensors and nanodevices, which use conformational or motional changes of surface-immobilized DNA for detection or actuation. We present an interferometric sensing platform that combines (i) dual-color fluorescence spectroscopy for precise axial co-localization of two fluorophores attached at different nucleotides of surface-immobilized DNA molecules and (ii) independent label-free quantification of biomolecule surface density at the same site. Using this platform, we examined the conformation of DNA molecules immobilized on a three-dimensional polymeric surface and demonstrated simultaneous detection of DNA conformational change and binding in real-time. These results demonstrate that independent quantification of both surface density and molecular nanoscale conformation constitutes a versatile approach for nanoscale solid-biochemical interface investigations and molecular binding assays.


Assuntos
Técnicas Biossensoriais/instrumentação , Corantes Fluorescentes/análise , Ácidos Nucleicos Imobilizados/análise , Nanoestruturas/química , Espectrometria de Fluorescência/instrumentação , Desenho de Equipamento , Fluorescência , Conformação de Ácido Nucleico , Polímeros/química
11.
Anal Chem ; 85(7): 3698-706, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23469929

RESUMO

Although biomarkers exist for a range of disease diagnostics, a single low-cost platform exhibiting the required sensitivity, a large dynamic-range and multiplexing capability, and zero sample preparation remains in high demand for a variety of clinical applications. The Interferometric Reflectance Imaging Sensor (IRIS) was utilized to digitally detect and size single gold nanoparticles to identify protein biomarkers in unprocessed serum and blood samples. IRIS is a simple, inexpensive, multiplexed, high-throughput, and label-free optical biosensor that was originally used to quantify biomass captured on a surface with moderate sensitivity. Here we demonstrate detection of ß-lactoglobulin, a cow's milk whey protein spiked in serum (>10 orders of magnitude) and whole blood (>5 orders of magnitude), at attomolar sensitivity. The clinical utility of IRIS was demonstrated by detecting allergen-specific IgE from microliters of characterized human serum and unprocessed whole blood samples by using secondary antibodies against human IgE labeled with 40 nm gold nanoparticles. To the best of our knowledge, this level of sensitivity over a large dynamic range has not been previously demonstrated. IRIS offers four main advantages compared to existing technologies: it (i) detects proteins from attomolar to nanomolar concentrations in unprocessed biological samples, (ii) unambiguously discriminates nanoparticles tags on a robust and physically large sensor area, (iii) detects protein targets with conjugated very small nanoparticle tags (~40 nm diameter), which minimally affect assay kinetics compared to conventional microparticle tagging methods, and (iv) utilizes components that make the instrument inexpensive, robust, and portable. These features make IRIS an ideal candidate for clinical and diagnostic applications.


Assuntos
Técnicas Biossensoriais/instrumentação , Imunoglobulina E/sangue , Interferometria/instrumentação , Lactoglobulinas/análise , Proteínas do Leite/sangue , Leite/química , Nanopartículas/química , Animais , Técnicas Biossensoriais/métodos , Bovinos , Ouro/química , Humanos , Interferometria/métodos , Sensibilidade e Especificidade , Proteínas do Soro do Leite
12.
Artigo em Inglês | MEDLINE | ID: mdl-37936884

RESUMO

Aim: Receptor activator of nuclear factor-kappa B (RANK)-containing extracellular vesicles (EVs) bind RANK-Ligand (RANKL) on osteoblasts, and thereby simultaneously inhibit bone resorption and promote bone formation. Because of this, they are attractive candidates for therapeutic bone anabolic agents. Previously, RANK was detected in 1 in every 36 EVs from osteoclasts by immunogold electron microscopy. Here, we have sought to characterize the subpopulation of EVs from osteoclasts that contains RANK in more detail. Methods: The tetraspanins CD9 and CD81 were localized in osteoclasts by immunofluorescence. EVs were visualized by transmission electron microscopy. A Single Particle Interferometric Reflectance Imaging Sensor (SP-IRIS) and immunoaffinity isolations examined whether RANK is enriched in specific types of EVs. Results: Immunofluorescence showed CD9 was mostly on or near the plasma membrane of osteoclasts. In contrast, CD81 was localized deeper in the osteoclast's cytosolic vesicular network. By interferometry, both CD9 and CD81 positive EVs from osteoclasts were small (56-83 nm in diameter), consistent with electron microscopy. The CD9 and CD81 EV populations were mostly distinct, and only 22% of the EVs contained both markers. RANK was detected by SP-IRIS in 2%-4% of the CD9-containing EVs, but not in CD81-positive EVs, from mature osteoclasts. Immunomagnetic isolation of CD9-containing EVs from conditioned media of osteoclasts removed most of the RANK. A trace amount of RANK was isolated with CD81. Conclusion: RANK was enriched in a subset of the CD9-positive EVs. The current study provides the first report of selective localization of RANK in subsets of EVs.

13.
medRxiv ; 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36865094

RESUMO

Background: Acute decompensation is associated with increased mortality in heart failure (HF) patients, though the underlying etiology remains unclear. Extracellular vesicles (EVs) and their cargo may mark specific cardiovascular physiologic states. We hypothesized that EV transcriptomic cargo, including long non-coding RNAs (lncRNAs) and mRNAs, is dynamic from the decompensated to recompensated HF state, reflecting molecular pathways relevant to adverse remodeling. Methods: We examined differential RNA expression from circulating plasma extracellular RNA in acute HF patients at hospital admission and discharge alongside healthy controls. We leveraged different exRNA carrier isolation methods, publicly available tissue banks, and single nuclear deconvolution of human cardiac tissue to identify cell and compartment specificity of the topmost significantly differentially expressed targets. EV-derived transcript fragments were prioritized by fold change (-1.5 to + 1.5) and significance (<5% false discovery rate), and their expression in EVs was subsequently validated in 182 additional patients (24 control; 86 HFpEF; 72 HFrEF) by qRT-PCR. We finally examined the regulation of EV-derived lncRNA transcripts in human cardiac cellular stress models. Results: We identified 138 lncRNAs and 147 mRNAs (present mostly as fragments in EVs) differentially expressed between HF and control. Differentially expressed transcripts between HFrEF vs. control were primarily cardiomyocyte derived, while those between HFpEF vs. control originated from multiple organs and different (non-cardiomyocyte) cell types within the myocardium. We validated 5 lncRNAs and 6 mRNAs to differentiate between HF and control. Of those, 4 lncRNAs (AC092656.1, lnc-CALML5-7, LINC00989, RMRP) were altered by decongestion, with their levels independent of weight changes during hospitalization. Further, these 4 lncRNAs dynamically responded to stress in cardiomyocytes and pericytes in vitro , with a directionality mirroring the acute congested state. Conclusion: Circulating EV transcriptome is significantly altered during acute HF, with distinct cell and organ specificity in HFpEF vs. HFrEF consistent with a multi-organ vs. cardiac origin, respectively. Plasma EV-derived lncRNA fragments were more dynamically regulated with acute HF therapy independent of weight change (relative to mRNAs). This dynamicity was further demonstrated with cellular stress in vitro . Prioritizing transcriptional changes in plasma circulating EVs with HF therapy may be a fruitful approach to HF subtype-specific mechanistic discovery. CLINICAL PERSPECTIVE: What is new?: We performed extracellular transcriptomic analysis on the plasma of patients with acute decompensated heart failure (HFrEF and HFpEF) before and after decongestive efforts.Long non-coding RNAs (lncRNAs) within extracellular vesicles (EVs) changed dynamically upon decongestion in concordance with changes within human iPSC-derived cardiomyocytes under stress.In acute decompensated HFrEF, EV RNAs are mainly derived from cardiomyocytes, whereas in HFpEF, EV RNAs appear to have broader, non-cardiomyocyte origins.What are the clinical implications?: Given their concordance between human expression profiles and dynamic in vitro responses, lncRNAs within EVs during acute HF may provide insight into potential therapeutic targets and mechanistically relevant pathways. These findings provide a "liquid biopsy" support for the burgeoning concept of HFpEF as a systemic disorder extending beyond the heart, as opposed to a more cardiac-focused physiology in HFrEF.

14.
Proteomics ; 12(19-20): 2963-77, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22930463

RESUMO

Protein and DNA microarrays hold the promise to revolutionize the field of molecular diagnostics. Traditional microarray applications employ labeled detection strategies based on the use of fluorescent and chemiluminescent secondary antibodies. However, the development of high throughput, sensitive, label-free detection techniques is attracting attention as they do not require labeled reactants and provide quantitative information on binding kinetics. In this article, we will provide an overview of the recent author's work in label and label-free sensing platforms employing silicon/silicon oxide (Si/SiO(2)) substrates for interferometric and/or fluorescence detection of microarrays. The review will focus on applications of Si/SiO(2) with controlled oxide layers to (i) enhance the fluorescence intensity by optical interferences, (ii) quantify with sub-nanometer accuracy the axial locations of fluorophore-labeled probes tethered to the surface, and (iii) detect protein-protein interactions label free. Different methods of biofunctionalization of the sensing surface will be discussed. In particular, organosilanization reactions for monodimensional coatings and polymeric coatings will be extensively reviewed. Finally, the importance of calibration of protein microarrays through the dual use of labeled and label-free detection schemes on the same chip will be illustrated.


Assuntos
Interferometria/instrumentação , Análise de Sequência com Séries de Oligonucleotídeos/instrumentação , Análise Serial de Proteínas/instrumentação , Silício/química , Espectrometria de Fluorescência/instrumentação , Polímeros/química , Dióxido de Silício/química
15.
J Extracell Vesicles ; 11(9): e12265, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36107309

RESUMO

CD47 regulates the trafficking of specific coding and noncoding RNAs into extracellular vesicles (EVs), and the RNA contents of CD47+ EVs differ from that of CD63+ EVs released by the same cells. Single particle interferometric reflectance imaging sensing combined with immunofluorescent imaging was used to analyse the colocalization of tetraspanins, integrins, and CD47 on EVs produced by wild type and CD47-deficient Jurkat T lymphoblast and PC3 prostate carcinoma cell lines. On Jurkat cell-derived EVs, ß1 and α4 integrin subunits colocalized predominantly with CD47 and CD81 but not with CD63 and CD9, conserving the known lateral interactions between these proteins in the plasma membrane. Although PC3 cell-derived EVs lacked detectable α4 integrin, specific association of CD81 with ß1 and CD47 was preserved. Loss of CD47 expression in Jurkat cells significantly reduced ß1 and α4 levels on EVs produced by these cells while elevating CD9+ , CD63+ , and CD81+ EVs. In contrast, loss of CD47 in PC3 cells decreased the abundance of CD63+ and CD81+ EVs. These data establish that CD47+ EVs are mostly distinct from EVs bearing the tetraspanins CD63 and CD9, but CD47 also indirectly regulates the abundance of EVs bearing these non-interacting tetraspanins via mechanisms that remain to be determined.


Assuntos
Carcinoma , Vesículas Extracelulares , Neoplasias da Próstata , Antígeno CD47/metabolismo , Carcinoma/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Integrina alfa4/metabolismo , Integrinas/metabolismo , Masculino , Próstata , Neoplasias da Próstata/metabolismo , RNA/metabolismo , Tetraspaninas/metabolismo
16.
J Vis Exp ; (179)2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35068480

RESUMO

Extracellular vesicles (EVs) are nanometer-sized vesicles with a lipid bilayer that are secreted by most cells. EVs carry a multitude of different biological molecules, including protein, lipid, DNA, and RNA, and are postulated to facilitate cell-to-cell communication in diverse tissues and organs. Recently, EVs have attracted significant attention as biomarkers for diagnostics and therapeutic agents for various diseases. Many methods have been developed for EV characterization. However, current methods for EV analysis all have different limitations. Thus, developing efficient and effective methods for EV isolation and characterization remains one of the crucial steps for this cutting-edge research field as it matures. Here, we provide a detailed protocol outlining a single-particle interferometric reflectance imaging sensor (SP-IRIS), as a method that is capable of detecting and characterizing EVs from unpurified biological sources and purified EVs by other methodologies. This advanced technique can be used for multi-level and comprehensive measurements for the analysis of EV size, EV count, EV phenotype, and biomarker colocalization.


Assuntos
Vesículas Extracelulares , Biomarcadores/metabolismo , Vesículas Extracelulares/metabolismo , Interferometria , Dinâmica Populacional , Proteínas/metabolismo
17.
Dev Cell ; 57(3): 329-343.e7, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35085484

RESUMO

Tumor-derived extracellular vesicles (TEVs) suppress the proliferation and cytotoxicity of CD8+ T cells, thereby contributing to tumor immune evasion. Here, we report that the adhesion molecule intercellular adhesion molecule 1 (ICAM-1) co-localizes with programmed death ligand 1 (PD-L1) on the exosomes; both ICAM-1 and PD-L1 are upregulated by interferon-γ. Exosomal ICAM-1 interacts with LFA-1, which is upregulated in activated T cells. Blocking ICAM-1 on TEVs reduces the interaction of TEVs with CD8+ T cells and attenuates PD-L1-mediated suppressive effects of TEVs. During this study, we have established an extracellular vesicle-target cell interaction detection through SorTagging (ETIDS) system to assess the interaction between a TEV ligand and its target cell receptor. Using this system, we demonstrate that the interaction of TEV PD-L1 with programmed cell death 1 (PD-1) on T cells is significantly reduced in the absence of ICAM-1. Our study demonstrates that ICAM-1-LFA-1-mediated adhesion between TEVs and T cells is a prerequisite for exosomal PD-L1-mediated immune suppression.


Assuntos
Exossomos/metabolismo , Terapia de Imunossupressão , Molécula 1 de Adesão Intercelular/metabolismo , Linfócitos T/citologia , Linfócitos T/imunologia , Animais , Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Adesão Celular/efeitos dos fármacos , Comunicação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Modelos Animais de Doenças , Exossomos/efeitos dos fármacos , Exossomos/ultraestrutura , Interferon gama/farmacologia , Melanoma/patologia , Camundongos Endogâmicos C57BL , Proteínas de Neoplasias/metabolismo , Ligação Proteica/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
18.
Nat Commun ; 12(1): 6239, 2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34716331

RESUMO

Adeno-associated viruses (AAV) rely on helper viruses to transition from latency to lytic infection. Some AAV serotypes are secreted in a pre-lytic manner as free or extracellular vesicle (EV)-associated particles, although mechanisms underlying such are unknown. Here, we discover that the membrane-associated accessory protein (MAAP), expressed from a frameshifted open reading frame in the AAV cap gene, is a novel viral egress factor. MAAP contains a highly conserved, cationic amphipathic domain critical for AAV secretion. Wild type or recombinant AAV with a mutated MAAP start site (MAAPΔ) show markedly attenuated secretion and correspondingly, increased intracellular retention. Trans-complementation with MAAP restored secretion of multiple AAV/MAAPΔ serotypes. Further, multiple processing and analytical methods corroborate that one plausible mechanism by which MAAP promotes viral egress is through AAV/EV association. In addition to characterizing a novel viral egress factor, we highlight a prospective engineering platform to modulate secretion of AAV vectors or other EV-associated cargo.


Assuntos
Dependovirus/fisiologia , Proteínas de Membrana/metabolismo , Proteínas Virais/metabolismo , Liberação de Vírus , Membrana Celular/química , Dependovirus/patogenicidade , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Células HEK293 , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Microrganismos Geneticamente Modificados/metabolismo , Domínios Proteicos , Proteínas Virais/química , Proteínas Virais/genética
19.
J Extracell Vesicles ; 10(10): e12130, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34377376

RESUMO

Extracellular Vesicles (EVs) have been intensively explored for therapeutic delivery of proteins. However, methods to quantify cargo proteins loaded into engineered EVs are lacking. Here, we describe a workflow for EV analysis at the single-vesicle and single-molecule level to accurately quantify the efficiency of different EV-sorting proteins in promoting cargo loading into EVs. Expi293F cells were engineered to express EV-sorting proteins fused to green fluorescent protein (GFP). High levels of GFP loading into secreted EVs was confirmed by Western blotting for specific EV-sorting domains, but quantitative single-vesicle analysis by Nanoflow cytometry detected GFP in less than half of the particles analysed, reflecting EV heterogeneity. Anti-tetraspanin EV immunostaining in ExoView confirmed a heterogeneous GFP distribution in distinct subpopulations of CD63+, CD81+, or CD9+ EVs. Loading of GFP into individual vesicles was quantified by Single-Molecule Localization Microscopy. The combined results demonstrated TSPAN14, CD63 and CD63/CD81 fused to the PDGFRß transmembrane domain as the most efficient EV-sorting proteins, accumulating on average 50-170 single GFP molecules per vesicle. In conclusion, we validated a set of complementary techniques suitable for high-resolution analysis of EV preparations that reliably capture their heterogeneity, and propose highly efficient EV-sorting proteins to be used in EV engineering applications.


Assuntos
Exossomos/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Nanotecnologia/métodos , Transporte Proteico , Proteínas Recombinantes de Fusão/metabolismo , Transporte Biológico , Linhagem Celular , Sistemas de Liberação de Medicamentos , Vesículas Extracelulares/química , Engenharia Genética , Proteínas de Fluorescência Verde/química , Humanos , Proteínas Recombinantes de Fusão/química , Tetraspaninas/imunologia , Tetraspaninas/metabolismo , Fluxo de Trabalho
20.
J Extracell Vesicles ; 9(1): 1761072, 2020 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-32922691

RESUMO

The ability of small extracellular vesicles (sEVs) to reprogram cancer cells is well established. However, the specific sEV components able to mediate aberrant effects in cancer cells have not been characterized. Integrins are major players in mediating sEV functions. We have previously reported that the αVß3 integrin is detected in sEVs of prostate cancer (PrCa) cells and transferred into recipient cells. Here, we investigate whether sEVs from αVß3-expressing cells affect tumour growth differently than sEVs from control cells that do not express αVß3. We compared the ability of sEVs to stimulate tumour growth, using sEVs isolated from PrCa C4-2B cells by iodixanol density gradient and characterized with immunoblotting, nanoparticle tracking analysis, immunocapturing and single vesicle analysis. We incubated PrCa cells with sEVs and injected them subcutaneously into nude mice to measure in vivo tumour growth or analysed in vitro their anchorage-independent growth. Our results demonstrate that a single treatment with sEVs shed from C4-2B cells that express αVß3, but not from control cells, stimulates tumour growth and induces differentiation of PrCa cells towards a neuroendocrine phenotype, as quantified by increased levels of neuroendocrine markers. In conclusion, the expression of αVß3 integrin generates sEVs capable of reprogramming cells towards an aggressive phenotype.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA