Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(28): e2202370119, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35749382

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections initiate in the bronchi of the upper respiratory tract and are able to disseminate to the lower respiratory tract, where infections can cause an acute respiratory distress syndrome with a high degree of mortality in elderly patients. We used reconstituted primary bronchial epithelia from adult and child donors to follow the SARS-CoV-2 infection dynamics. We show that, in epithelia from adult donors, infections initiate in multiciliated cells and spread within 24 to 48 h throughout the whole epithelia. Syncytia formed of ciliated and basal cells appeared at the apical side of the epithelia within 3 to 4 d and were released into the apical lumen, where they contributed to the transmittable virus dose. A small number of reconstituted epithelia were intrinsically more resistant to virus infection, limiting virus spread to different degrees. This phenotype was more frequent in epithelia derived from children versus adults and correlated with an accelerated release of type III interferon. Treatment of permissive adult epithelia with exogenous type III interferon restricted infection, while type III interferon gene knockout promoted infection. Furthermore, a transcript analysis revealed that the inflammatory response was specifically attenuated in children. Taken together, our findings suggest that apical syncytia formation is an underappreciated source of virus propagation for tissue or environmental dissemination, whereas a robust type III interferon response such as commonly seen in young donors restricted SARS-CoV-2 infection. Thus, the combination of interferon restriction and attenuated inflammatory response in children might explain the epidemiological observation of age-related susceptibility to COVID-19.


Assuntos
Brônquios , COVID-19 , Células Gigantes , Interferons , Mucosa Respiratória , SARS-CoV-2 , Idoso , Brônquios/imunologia , Brônquios/virologia , COVID-19/imunologia , COVID-19/virologia , Criança , Suscetibilidade a Doenças , Células Gigantes/imunologia , Células Gigantes/virologia , Humanos , Interferons/imunologia , Mucosa Respiratória/imunologia , Mucosa Respiratória/virologia , SARS-CoV-2/imunologia , Interferon lambda
2.
J Cell Sci ; 135(11)2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35588197

RESUMO

In Trypanosoma brucei, transition fibres (TFs) form a nine-bladed pattern-like structure connecting the base of the flagellum to the flagellar pocket membrane. Despite the characterization of two TF proteins, CEP164C and T. brucei (Tb)RP2, little is known about the organization of these fibres. Here, we report the identification and characterization of the first kinetoplastid-specific TF protein, named TFK1 (Tb927.6.1180). Bioinformatics and functional domain analysis identified three distinct domains in TFK1 - an N-terminal domain of an unpredicted function, a coiled-coil domain involved in TFK1-TFK1 interaction and a C-terminal intrinsically disordered region potentially involved in protein interaction. Cellular immunolocalization showed that TFK1 is a newly identified basal body maturation marker. Furthermore, using ultrastructure expansion and immuno-electron microscopies we localized CEP164C and TbRP2 at the TF, and TFK1 on the distal appendage matrix of the TF. Importantly, RNAi-mediated knockdown of TFK1 in bloodstream form cells induced misplacement of basal bodies, a defect in the furrow or fold generation, and eventually cell death. We hypothesize that TFK1 is a basal body positioning-specific actor and a key regulator of cytokinesis in the bloodstream form Trypanosoma brucei.


Assuntos
Trypanosoma brucei brucei , Corpos Basais/metabolismo , Citocinese , Flagelos/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/metabolismo
3.
Am J Hum Genet ; 105(6): 1148-1167, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31735292

RESUMO

In humans, structural or functional defects of the sperm flagellum induce asthenozoospermia, which accounts for the main sperm defect encountered in infertile men. Herein we focused on morphological abnormalities of the sperm flagellum (MMAF), a phenotype also termed "short tails," which constitutes one of the most severe sperm morphological defects resulting in asthenozoospermia. In previous work based on whole-exome sequencing of a cohort of 167 MMAF-affected individuals, we identified bi-allelic loss-of-function mutations in more than 30% of the tested subjects. In this study, we further analyzed this cohort and identified five individuals with homozygous truncating variants in TTC29, a gene preferentially and highly expressed in the testis, and encoding a tetratricopeptide repeat-containing protein related to the intraflagellar transport (IFT). One individual carried a frameshift variant, another one carried a homozygous stop-gain variant, and three carried the same splicing variant affecting a consensus donor site. The deleterious effect of this last variant was confirmed on the corresponding transcript and protein product. In addition, we produced and analyzed TTC29 loss-of-function models in the flagellated protist T. brucei and in M. musculus. Both models confirmed the importance of TTC29 for flagellar beating. We showed that in T. brucei the TPR structural motifs, highly conserved between the studied orthologs, are critical for TTC29 axonemal localization and flagellar beating. Overall our work demonstrates that TTC29 is a conserved axonemal protein required for flagellar structure and beating and that TTC29 mutations are a cause of male sterility due to MMAF.


Assuntos
Astenozoospermia/etiologia , Axonema/patologia , Flagelos/patologia , Infertilidade Masculina/etiologia , Proteínas Associadas aos Microtúbulos/genética , Mutação , Animais , Astenozoospermia/metabolismo , Astenozoospermia/patologia , Axonema/genética , Axonema/metabolismo , Evolução Molecular , Feminino , Fertilização in vitro , Flagelos/genética , Flagelos/metabolismo , Humanos , Infertilidade Masculina/metabolismo , Infertilidade Masculina/patologia , Masculino , Camundongos Endogâmicos C57BL , Trypanosoma brucei brucei/fisiologia , Tripanossomíase
4.
Am J Hum Genet ; 103(3): 400-412, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30122540

RESUMO

Multiple morphological abnormalities of the sperm flagellum (MMAF) is a severe form of male infertility defined by the presence of a mosaic of anomalies, including short, bent, curled, thick, or absent flagella, resulting from a severe disorganization of the axoneme and of the peri-axonemal structures. Mutations in DNAH1, CFAP43, and CFAP44, three genes encoding axoneme-related proteins, have been described to account for approximately 30% of the MMAF cases reported so far. Here, we searched for pathological copy-number variants in whole-exome sequencing data from a cohort of 78 MMAF-affected subjects to identify additional genes associated with MMAF. In 7 of 78 affected individuals, we identified a homozygous deletion that removes the two penultimate exons of WDR66 (also named CFAP251), a gene coding for an axonemal protein preferentially localized in the testis and described to localize to the calmodulin- and spoke-associated complex at the base of radial spoke 3. Sequence analysis of the breakpoint region revealed in all deleted subjects the presence of a single chimeric SVA (SINE-VNTR-Alu) at the breakpoint site, suggesting that the initial deletion event was potentially mediated by an SVA insertion-recombination mechanism. Study of Trypanosoma WDR66's ortholog (TbWDR66) highlighted high sequence and structural analogy with the human protein and confirmed axonemal localization of the protein. Reproduction of the human deletion in TbWDR66 impaired flagellar movement, thus confirming WDR66 as a gene associated with the MMAF phenotype and highlighting the importance of the WDR66 C-terminal region.


Assuntos
Anormalidades Múltiplas/genética , Proteínas de Ligação ao Cálcio/genética , Flagelos/genética , Infertilidade Masculina/genética , Mutação/genética , Cauda do Espermatozoide/patologia , Espermatozoides/anormalidades , Axonema/genética , Estudos de Coortes , Dineínas/genética , Homozigoto , Humanos , Masculino , Testículo/patologia , Sequenciamento do Exoma/métodos
5.
J Med Genet ; 57(10): 708-716, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32161152

RESUMO

BACKGROUND: Multiple morphological abnormalities of the flagella (MMAF) consistently lead to male infertility due to a reduced or absent sperm motility defined as asthenozoospermia. Despite numerous genes recently described to be recurrently associated with MMAF, more than half of the cases analysed remain unresolved, suggesting that many yet uncharacterised gene defects account for this phenotype METHODS: Exome sequencing was performed on 167 infertile men with an MMAF phenotype. Immunostaining and transmission electron microscopy (TEM) in sperm cells from affected individuals were performed to characterise the ultrastructural sperm defects. Gene inactivation using RNA interference (RNAi) was subsequently performed in Trypanosoma. RESULTS: We identified six unrelated affected patients carrying a homozygous deleterious variants in MAATS1, a gene encoding CFAP91, a calmodulin-associated and spoke-associated complex (CSC) protein. TEM and immunostaining experiments in sperm cells showed severe central pair complex (CPC) and radial spokes defects. Moreover, we confirmed that the WDR66 protein is a physical and functional partner of CFAP91 into the CSC. Study of Trypanosoma MAATS1's orthologue (TbCFAP91) highlighted high sequence and structural analogies with the human protein and confirmed the axonemal localisation of the protein. Knockdown of TbCFAP91 using RNAi impaired flagellar movement led to CPC defects in Trypanosoma as observed in humans. CONCLUSIONS: We showed that CFAP91 is essential for normal sperm flagellum structure and function in human and Trypanosoma and that biallelic variants in this gene lead to severe flagellum malformations resulting in astheno-teratozoospermia and primary male infertility.


Assuntos
Anormalidades Múltiplas/genética , Astenozoospermia/genética , Proteínas de Ligação ao Cálcio/genética , Proteínas de Transporte/genética , Infertilidade Masculina/genética , Anormalidades Múltiplas/patologia , Animais , Astenozoospermia/patologia , Axonema/genética , Axonema/ultraestrutura , Homozigoto , Humanos , Infertilidade Masculina/patologia , Masculino , Mutação/genética , Motilidade dos Espermatozoides/genética , Cauda do Espermatozoide/metabolismo , Cauda do Espermatozoide/patologia , Cauda do Espermatozoide/ultraestrutura , Espermatozoides/patologia , Espermatozoides/ultraestrutura , Trypanosoma/genética , Sequenciamento do Exoma
6.
Hum Mol Genet ; 27(7): 1196-1211, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29365104

RESUMO

Motile cilia and sperm flagella share an extremely conserved microtubule-based cytoskeleton, called the axoneme, which sustains beating and motility of both organelles. Ultra-structural and/or functional defects of this axoneme are well-known to cause primary ciliary dyskinesia (PCD), a disorder characterized by recurrent respiratory tract infections, chronic otitis media, situs inversus, male infertility and in most severe cases, hydrocephalus. Only recently, mutations in genes encoding axonemal proteins with preferential expression in the testis were identified in isolated male infertility; in those cases, individuals displayed severe asthenozoospermia due to Multiple Morphological Abnormalities of the sperm Flagella (MMAF) but not PCD features. In this study, we performed genetic investigation of two siblings presenting MMAF without any respiratory PCD features, and we report the identification of the c.2018T > G (p.Leu673Pro) transversion in AK7, encoding an adenylate kinase, expressed in ciliated tissues and testis. By performing transcript and protein analyses of biological samples from individual carrying the transversion, we demonstrate that this mutation leads to the loss of AK7 protein in sperm cells but not in respiratory ciliated cells, although both cell types carry the mutated transcript and no tissue-specific isoforms were detected. This work therefore, supports the notion that proteins shared by both cilia and sperm flagella may have specific properties and/or function in each organelle, in line with the differences in their mode of assembly and organization. Overall, this work identifies a novel genetic cause of asthenozoospermia due to MMAF and suggests that in humans, more deleterious mutations of AK7 might induce PCD.


Assuntos
Adenilato Quinase/genética , Transtornos da Motilidade Ciliar/genética , Homozigoto , Infertilidade Masculina/genética , Mutação de Sentido Incorreto , Cauda do Espermatozoide , Adenilato Quinase/metabolismo , Adulto , Transtornos da Motilidade Ciliar/enzimologia , Transtornos da Motilidade Ciliar/patologia , Humanos , Infertilidade Masculina/enzimologia , Infertilidade Masculina/patologia , Masculino
7.
J Cell Sci ; 128(7): 1294-307, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25673876

RESUMO

Cilia and flagella are microtubule-based organelles present at the surface of most cells, ranging from protozoa to vertebrates, in which these structures are implicated in processes from morphogenesis to cell motility. In vertebrate neurons, microtubule-associated MAP6 proteins stabilize cold-resistant microtubules through their Mn and Mc modules, and play a role in synaptic plasticity. Although centrioles, cilia and flagella have cold-stable microtubules, MAP6 proteins have not been identified in these organelles, suggesting that additional proteins support this role in these structures. Here, we characterize human FAM154A (hereafter referred to as hSAXO1) as the first human member of a widely conserved family of MAP6-related proteins specific to centrioles and cilium microtubules. Our data demonstrate that hSAXO1 binds specifically to centriole and cilium microtubules. We identify, in vivo and in vitro, hSAXO1 Mn modules as responsible for microtubule binding and stabilization as well as being necessary for ciliary localization. Finally, overexpression and knockdown studies show that hSAXO1 modulates axoneme length. Taken together, our findings suggest a fine regulation of hSAXO1 localization and important roles in cilium biogenesis and function.


Assuntos
Cílios/metabolismo , Proteínas do Olho/metabolismo , Microtúbulos/metabolismo , Axonema/genética , Axonema/metabolismo , Centríolos/genética , Centríolos/metabolismo , Cílios/química , Cílios/genética , Proteínas do Olho/genética , Humanos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/química , Microtúbulos/genética
9.
PLoS Pathog ; 11(3): e1004654, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25822645

RESUMO

The flagellar pocket (FP) of the pathogen Trypanosoma brucei is an important single copy structure that is formed by the invagination of the pellicular membrane. It is the unique site of endo- and exocytosis and is required for parasite pathogenicity. The FP consists of distinct structural sub-domains with the least explored being the annulus/horseshoe shaped flagellar pocket collar (FPC). To date the only known component of the FPC is the protein BILBO1, a cytoskeleton protein that has a N-terminus that contains an ubiquitin-like fold, two EF-hand domains, plus a large C-terminal coiled-coil domain. BILBO1 has been shown to bind calcium, but in this work we demonstrate that mutating either or both calcium-binding domains prevents calcium binding. The expression of deletion or mutated forms of BILBO1 in trypanosomes and mammalian cells demonstrate that the coiled-coil domain is necessary and sufficient for the formation of BILBO1 polymers. This is supported by Yeast two-hybrid analysis. Expression of full-length BILBO1 in mammalian cells induces the formation of linear polymers with comma and globular shaped termini, whereas mutation of the canonical calcium-binding domain resulted in the formation of helical polymers and mutation in both EF-hand domains prevented the formation of linear polymers. We also demonstrate that in T. brucei the coiled-coil domain is able to target BILBO1 to the FPC and to form polymers whilst the EF-hand domains influence polymers shape. This data indicates that BILBO1 has intrinsic polymer forming properties and that binding calcium can modulate the form of these polymers. We discuss whether these properties can influence the formation of the FPC.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Flagelos/metabolismo , Multimerização Proteica/fisiologia , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/metabolismo , Proteínas de Ligação ao Cálcio/genética , Linhagem Celular Tumoral , Flagelos/genética , Humanos , Mutação , Estrutura Terciária de Proteína , Proteínas de Protozoários/genética , Trypanosoma brucei brucei/genética
11.
J Virol ; 89(4): 2121-35, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25473051

RESUMO

UNLABELLED: Nuclear delivery of the adenoviral genome requires that the capsid cross the limiting membrane of the endocytic compartment and traverse the cytosol to reach the nucleus. This endosomal escape is initiated upon internalization and involves a highly coordinated process of partial disassembly of the entering capsid to release the membrane lytic internal capsid protein VI. Using wild-type and protein VI-mutated human adenovirus serotype 5 (HAdV-C5), we show that capsid stability and membrane rupture are major determinants of entry-related sorting of incoming adenovirus virions. Furthermore, by using electron cryomicroscopy, as well as penton- and protein VI-specific antibodies, we show that the amphipathic helix of protein VI contributes to capsid stability by preventing premature disassembly and deployment of pentons and protein VI. Thus, the helix has a dual function in maintaining the metastable state of the capsid by preventing premature disassembly and mediating efficient membrane lysis to evade lysosomal targeting. Based on these findings and structural data from cryo-electron microscopy, we suggest a refined disassembly mechanism upon entry. IMPORTANCE: In this study, we show the intricate connection of adenovirus particle stability and the entry-dependent release of the membrane-lytic capsid protein VI required for endosomal escape. We show that the amphipathic helix of the adenovirus internal protein VI is required to stabilize pentons in the particle while coinciding with penton release upon entry and that release of protein VI mediates membrane lysis, thereby preventing lysosomal sorting. We suggest that this dual functionality of protein VI ensures an optimal disassembly process by balancing the metastable state of the mature adenovirus particle.


Assuntos
Adenovírus Humanos/fisiologia , Proteínas do Capsídeo/metabolismo , Internalização do Vírus , Desenvelopamento do Vírus , Adenovírus Humanos/genética , Proteínas do Capsídeo/genética , Linhagem Celular , Microscopia Crioeletrônica , Humanos
12.
Elife ; 122023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37934199

RESUMO

Male infertility is common and complex, presenting a wide range of heterogeneous phenotypes. Although about 50% of cases are estimated to have a genetic component, the underlying cause often remains undetermined. Here, from whole-exome sequencing on samples from 168 infertile men with asthenoteratozoospermia due to severe sperm flagellum, we identified homozygous ZMYND12 variants in four unrelated patients. In sperm cells from these individuals, immunofluorescence revealed altered localization of DNAH1, DNALI1, WDR66, and TTC29. Axonemal localization of ZMYND12 ortholog TbTAX-1 was confirmed using the Trypanosoma brucei model. RNAi knock-down of TbTAX-1 dramatically affected flagellar motility, with a phenotype similar to the sperm from men bearing homozygous ZMYND12 variants. Co-immunoprecipitation and ultrastructure expansion microscopy in T. brucei revealed TbTAX-1 to form a complex with TTC29. Comparative proteomics with samples from Trypanosoma and Ttc29 KO mice identified a third member of this complex: DNAH1. The data presented revealed that ZMYND12 is part of the same axonemal complex as TTC29 and DNAH1, which is critical for flagellum function and assembly in humans, and Trypanosoma. ZMYND12 is thus a new asthenoteratozoospermia-associated gene, bi-allelic variants of which cause severe flagellum malformations and primary male infertility.


Assuntos
Astenozoospermia , Infertilidade Masculina , Humanos , Masculino , Animais , Camundongos , Sêmen , Flagelos , Fertilidade , Proteínas de Ligação ao Cálcio , Dineínas
13.
Parasite ; 29: 14, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35262485

RESUMO

The flagellar pocket (FP) of the pathogen Trypanosoma brucei is an important single copy structure that is formed by the invagination of the pellicular membrane. It is the unique site of endo- and exocytosis and is required for parasite pathogenicity. The FP consists of distinct structural sub-domains with the least explored being the flagellar pocket collar (FPC). TbBILBO1 is the first-described FPC protein of Trypanosoma brucei. It is essential for parasite survival, FP and FPC biogenesis. In this work, we characterize TbKINX1B, a novel TbBILBO1 partner. We demonstrate that TbKINX1B is located on the basal bodies, the microtubule quartet (a set of four microtubules) and the FPC in T. brucei. Down-regulation of TbKINX1B by RNA interference in bloodstream forms is lethal, inducing an overall disturbance in the endomembrane network. In procyclic forms, the RNAi knockdown of TbKINX1B leads to a minor phenotype with a small number of cells displaying epimastigote-like morphologies, with a misplaced kinetoplast. Our results characterize TbKINX1B as the first putative kinesin to be localized both at the basal bodies and the FPC with a potential role in transporting cargo along with the microtubule quartet.


Title: TbKINX1B, un nouveau partenaire de BILBO1, et une protéine essentielle dans la forme sanguine de Trypanosoma brucei. Abstract: La poche flagellaire (PF) de l'agent pathogène Trypanosoma brucei est une structure importante à copie unique formée par l'invagination de la membrane pelliculaire. Elle est le site unique de l'endo- et de l'exocytose et est nécessaire à la pathogénicité du parasite. La PF est constituée de sous-domaines structurels distincts, le moins exploré étant le collier de poche flagellaire (CPF). TbBILBO1 est la première protéine du CPF décrite. Elle est essentielle pour la survie du parasite et la biogenèse de la PF et du CPF. Dans ce travail, nous caractérisons TbKINX1B, un nouveau partenaire de TbBILBO1. Nous démontrons que TbKINX1B est localisée au niveau des corps basaux, du quartet de microtubules (un ensemble de quatre microtubules) et du CPF chez T. brucei. La diminution de l'expression de TbKINX1B par ARN interférence dans les formes sanguines est létale, induisant une perturbation globale du réseau endomembranaire. Dans les formes procycliques, l'ARN interférence conduit à un phénotype mineur avec un petit nombre de cellules présentant des morphologies de type épimastigote, avec un kinétoplaste mal placé. Nos résultats caractérisent TbKINX1B comme la première kinésine putative à être localisée à la fois au niveau des corps basaux et du CPF avec un rôle potentiel dans le transport de cargaison le long du quartet de microtubules.


Assuntos
Trypanosoma brucei brucei , Flagelos/genética , Flagelos/metabolismo , Microtúbulos , Proteínas de Protozoários/química , Interferência de RNA , Trypanosoma brucei brucei/química , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo
14.
Microbiol Spectr ; 9(2): e0091521, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34704826

RESUMO

Trypanosoma brucei belongs to a genus of protists that cause life-threatening and economically important diseases of human and animal populations in Sub-Saharan Africa. T. brucei cells are covered in surface glycoproteins, some of which are used to escape the host immune system. Exo-/endocytotic trafficking of these and other molecules occurs via a single copy organelle called the flagellar pocket (FP). The FP is maintained and enclosed around the flagellum by the flagellar pocket collar (FPC). To date, the most important cytoskeletal component of the FPC is an essential calcium-binding, polymer-forming protein called TbBILBO1. In searching for novel tools to study this protein, we raised nanobodies (Nb) against purified, full-length TbBILBO1. Nanobodies were selected according to their binding properties to TbBILBO1, tested as immunofluorescence tools, and expressed as intrabodies (INb). One of them, Nb48, proved to be the most robust nanobody and intrabody. We further demonstrate that inducible, cytoplasmic expression of INb48 was lethal to these parasites, producing abnormal phenotypes resembling those of TbBILBO1 RNA interference (RNAi) knockdown. Our results validate the feasibility of generating functional single-domain antibody-derived intrabodies to target trypanosome cytoskeleton proteins. IMPORTANCE Trypanosoma brucei belongs to a group of important zoonotic parasites. We investigated how these organisms develop their cytoskeleton (the internal skeleton that controls cell shape) and focused on an essential protein (BILBO1) first described in T. brucei. To develop our analysis, we used purified BILBO1 protein to immunize an alpaca to make nanobodies (Nb). Nanobodies are derived from the antigen-binding portion of a novel antibody type found only in the camel and shark families of animals. Anti-BILBO1 nanobodies were obtained, and their encoding genes were inducibly expressed within the cytoplasm of T. brucei as intrabodies (INb). Importantly, INb48 expression rapidly killed parasites producing phenotypes normally observed after RNA knockdown, providing clear proof of principle. The importance of this study is derived from this novel approach, which can be used to study neglected and emerging pathogens as well as new model organisms, especially those that do not have the RNAi system.


Assuntos
Proteínas de Ligação ao Cálcio/imunologia , Morte Celular/imunologia , Proteínas do Citoesqueleto/imunologia , Anticorpos de Domínio Único/imunologia , Trypanosoma brucei brucei/imunologia , Proteínas de Ligação ao Cálcio/antagonistas & inibidores , Proteínas de Ligação ao Cálcio/metabolismo , Flagelos/metabolismo , Interferência de RNA , Trypanosoma brucei brucei/metabolismo , Tripanossomíase Africana/parasitologia
15.
Microorganisms ; 9(11)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34835460

RESUMO

BACKGROUND: In most trypanosomes, endo and exocytosis only occur at a unique organelle called the flagellar pocket (FP) and the flagellum exits the cell via the FP. Investigations of essential cytoskeleton-associated structures located at this site have revealed a number of essential proteins. The protein TbBILBO1 is located at the neck of the FP in a structure called the flagellar pocket collar (FPC) and is essential for biogenesis of the FPC and parasite survival. TbMORN1 is a protein that is present on a closely linked structure called the hook complex (HC) and is located anterior to and overlapping the collar. TbMORN1 is essential in the bloodstream form of T. brucei. We now describe the location and function of BHALIN, an essential, new FPC-HC protein. METHODOLOGY/PRINCIPAL FINDINGS: Here, we show that a newly characterised protein, BHALIN (BILBO1 Hook Associated LINker protein), is localised to both the FPC and HC and has a TbBILBO1 binding domain, which was confirmed in vitro. Knockdown of BHALIN by RNAi in the bloodstream form parasites led to cell death, indicating an essential role in cell viability. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate the essential role of a newly characterised hook complex protein, BHALIN, that influences flagellar pocket organisation and function in bloodstream form T. brucei parasites.

16.
Nat Commun ; 9(1): 686, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29449551

RESUMO

Spermatogenesis defects concern millions of men worldwide, yet the vast majority remains undiagnosed. Here we report men with primary infertility due to multiple morphological abnormalities of the sperm flagella with severe disorganization of the sperm axoneme, a microtubule-based structure highly conserved throughout evolution. Whole-exome sequencing was performed on 78 patients allowing the identification of 22 men with bi-allelic mutations in DNAH1 (n = 6), CFAP43 (n = 10), and CFAP44 (n = 6). CRISPR/Cas9 created homozygous CFAP43/44 male mice that were infertile and presented severe flagellar defects confirming the human genetic results. Immunoelectron and stimulated-emission-depletion microscopy performed on CFAP43 and CFAP44 orthologs in Trypanosoma brucei evidenced that both proteins are located between the doublet microtubules 5 and 6 and the paraflagellar rod. Overall, we demonstrate that CFAP43 and CFAP44 have a similar structure with a unique axonemal localization and are necessary to produce functional flagella in species ranging from Trypanosoma to human.


Assuntos
Flagelos/fisiologia , Infertilidade Masculina/genética , Proteínas dos Microtúbulos/genética , Mutação , Proteínas Nucleares/genética , Peptídeo Hidrolases/genética , Espermatozoides/fisiologia , Trypanosoma/fisiologia , Adulto , Animais , Axonema , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Estudos de Coortes , Proteínas do Citoesqueleto , Fertilidade , Flagelos/metabolismo , Homozigoto , Humanos , Masculino , Camundongos , Camundongos Knockout , Microscopia Imunoeletrônica , Pessoa de Meia-Idade , Motilidade dos Espermatozoides , Espermatozoides/metabolismo , Sequenciamento do Exoma
17.
PLoS Negl Trop Dis ; 10(11): e0005125, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27855164

RESUMO

Trypanosoma brucei gambiense is the main causative agent of Human African Trypanosomiasis (HAT), also known as sleeping sickness. Because of limited alternatives and treatment toxicities, new therapeutic options are urgently needed for patients with HAT. Sterol 14alpha-demethylase (CYP51) is a potential drug target but its essentiality has not been determined in T. brucei. We used a tetracycline-inducible RNAi system to assess the essentiality of CYP51 in T. brucei bloodstream form (BSF) cells and we evaluated the effect of posaconazole, a well-tolerated triazole drug, within a panel of virulent strains in vitro and in a murine model. Expression of CYP51 in several T. brucei cell lines was demonstrated by western blot and its essentiality was demonstrated by RNA interference (CYP51RNAi) in vitro. Following reduction of TbCYP51 expression by RNAi, cell growth was reduced and eventually stopped compared to WT or non-induced cells, showing the requirement of CYP51 in T. brucei. These phenotypes were rescued by addition of ergosterol. Additionally, CYP51RNAi induction caused morphological defects with multiflagellated cells (p<0.05), suggesting cytokinesis dysfunction. The survival of CYP51RNAi Doxycycline-treated mice (p = 0.053) and of CYP51RNAi 5-day pre-induced Doxycycline-treated mice (p = 0.008) were improved compared to WT showing a CYP51 RNAi effect on trypanosomal virulence in mice. The posaconazole concentrations that inhibited parasite growth by 50% (IC50) were 8.5, 2.7, 1.6 and 0.12 µM for T. b. brucei 427 90-13, T. b. brucei Antat 1.1, T. b. gambiense Feo (Feo/ITMAP/1893) and T. b. gambiense Biyamina (MHOM/SD/82), respectively. During infection with these last three virulent strains, posaconazole-eflornithine and nifurtimox-eflornithine combinations showed similar improvement in mice survival (p≤0.001). Our results provide support for a CYP51 targeting based treatment in HAT. Thus posaconazole used in combination may represent a therapeutic alternative for trypanosomiasis.


Assuntos
Inibidores de 14-alfa Desmetilase/farmacologia , Nifurtimox/uso terapêutico , Esterol 14-Desmetilase/metabolismo , Tripanossomicidas/uso terapêutico , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/enzimologia , Tripanossomíase Africana/tratamento farmacológico , Animais , Antibacterianos/uso terapêutico , Citocinese , Modelos Animais de Doenças , Doxiciclina/uso terapêutico , Eflornitina/uso terapêutico , Ergosterol/farmacologia , Humanos , Camundongos , Fenótipo , Interferência de RNA , Esterol 14-Desmetilase/genética , Triazóis/farmacologia , Triazóis/uso terapêutico , Trypanosoma brucei brucei/crescimento & desenvolvimento , Trypanosoma brucei brucei/patogenicidade , Tripanossomíase Africana/parasitologia
18.
PLoS One ; 10(9): e0137102, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26332038

RESUMO

Inside the adenovirus virion, the genome forms a chromatin-like structure with viral basic core proteins. Core protein VII is the major DNA binding protein and was shown to remain associated with viral genomes upon virus entry even after nuclear delivery. It has been suggested that protein VII plays a regulatory role in viral gene expression and is a functional component of viral chromatin complexes in host cells. As such, protein VII could be used as a maker to track adenoviral chromatin complexes in vivo. In this study, we characterize a new monoclonal antibody against protein VII that stains incoming viral chromatin complexes following nuclear import. Furthermore, we describe the development of a novel imaging system that uses Template Activating Factor-I (TAF-I/SET), a cellular chromatin protein tightly bound to protein VII upon infection. This setup allows us not only to rapidly visualize protein VII foci in fixed cells but also to monitor their movement in living cells. These powerful tools can provide novel insights into the spatio-temporal regulation of incoming adenoviral chromatin complexes.


Assuntos
Adenoviridae/metabolismo , Cromatina/metabolismo , Linhagem Celular , Humanos
19.
FEMS Immunol Med Microbiol ; 38(2): 113-6, 2003 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-13129645

RESUMO

A polymerase chain reaction (PCR)-based procedure without any cloning step was developed for a rapid mutagenesis/deletion of chromosomal target genes in Yersinia. For this purpose, a PCR fragment carrying an antibiotic resistance gene flanked by regions homologous to the target locus is electroporated into a recipient strain expressing the highly proficient homologous recombination system encoded by plasmid pKOBEG-sacB. Two PCR procedures were tested to generate an amplification product formed of an antibiotic resistance gene flanked by short (55 bp) or long (500 bp) homology extensions. Using this method, three chromosomal loci were successfully disrupted in Yersinia pseudotuberculosis. The use of this technique allows rapid and efficient large-scale mutagenesis of Yersinia target chromosomal genes.


Assuntos
Proteínas de Bactérias/genética , Deleção de Genes , Resistência a Canamicina/genética , Mutagênese , Reação em Cadeia da Polimerase/métodos , Yersinia pseudotuberculosis/genética , Alelos , Cromossomos Bacterianos/genética , Eletroporação , Plasmídeos , Recombinação Genética/genética , Fatores de Tempo , Transformação Bacteriana , Yersinia pseudotuberculosis/patogenicidade
20.
PLoS One ; 7(2): e31344, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22355359

RESUMO

In vertebrates the microtubule-associated proteins MAP6 and MAP6d1 stabilize cold-resistant microtubules. Cilia and flagella have cold-stable microtubules but MAP6 proteins have not been identified in these organelles. Here, we describe TbSAXO as the first MAP6-related protein to be identified in a protozoan, Trypanosoma brucei. Using a heterologous expression system, we show that TbSAXO is a microtubule stabilizing protein. Furthermore we identify the domains of the protein responsible for microtubule binding and stabilizing and show that they share homologies with the microtubule-stabilizing Mn domains of the MAP6 proteins. We demonstrate, in the flagellated parasite, that TbSAXO is an axonemal protein that plays a role in flagellum motility. Lastly we provide evidence that TbSAXO belongs to a group of MAP6-related proteins (SAXO proteins) present only in ciliated or flagellated organisms ranging from protozoa to mammals. We discuss the potential roles of the SAXO proteins in cilia and flagella function.


Assuntos
Movimento Celular/fisiologia , Flagelos/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/metabolismo , Tripanossomíase Africana/metabolismo , Sequência de Aminoácidos , Animais , Cílios/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Dados de Sequência Molecular , Organelas/metabolismo , Ligação Proteica , Proteínas de Protozoários/genética , Homologia de Sequência de Aminoácidos , Trypanosoma brucei brucei/genética , Tripanossomíase Africana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA