Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
J Biol Chem ; 296: 100478, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33647315

RESUMO

Melanoma is the most aggressive skin malignancy with increasing incidence worldwide. Pannexin1 (PANX1), a member of the pannexin family of channel-forming glycoproteins, regulates cellular processes in melanoma cells including proliferation, migration, and invasion/metastasis. However, the mechanisms responsible for coordinating and regulating PANX1 function remain unclear. Here, we demonstrated a direct interaction between the C-terminal region of PANX1 and the N-terminal portion of ß-catenin, a key transcription factor in the Wnt pathway. At the protein level, ß-catenin was significantly decreased when PANX1 was either knocked down or inhibited by two PANX1 blockers, Probenecid and Spironolactone. Immunofluorescence imaging showed a disrupted pattern of ß-catenin localization at the cell membrane in PANX1-deficient cells, and transcription of several Wnt target genes, including MITF, was suppressed. In addition, a mitochondrial stress test revealed that the metabolism of PANX1-deficient cells was impaired, indicating a role for PANX1 in the regulation of the melanoma cell metabolic profile. Taken together, our data show that PANX1 directly interacts with ß-catenin to modulate growth and metabolism in melanoma cells. These findings provide mechanistic insight into PANX1-mediated melanoma progression and may be applicable to other contexts where PANX1 and ß-catenin interact as a potential new component of the Wnt signaling pathway.


Assuntos
Conexinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , beta Catenina/metabolismo , Animais , Ciclo Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Conexinas/genética , Conexinas/fisiologia , Humanos , Melanoma/genética , Melanoma/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Fatores de Transcrição/metabolismo , Via de Sinalização Wnt , beta Catenina/fisiologia
2.
Biochim Biophys Acta ; 1863(12): 2892-2904, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27627840

RESUMO

The formation of tight cell-cell junctions is essential in the epidermis for its barrier properties. In this tissue, keratinocytes follow a differentiation program tightly associated with their movement from the innermost basal to the outer suprabasal layers, and with changes in their cell-cell adhesion profile. Intercellular adhesion in keratinocytes is mediated through cell-cell contacts, including E-cadherin-based adherens junctions. Although the mechanisms that mediate E-cadherin delivery to the plasma membrane have been widely studied in simple epithelia, this process is less well understood in the stratified epidermis. In this study, we have investigated the role of Engulfment and Cell Motility 2 (ELMO2) and integrin-linked kinase (ILK) in the positioning of E-cadherin-containing recycling endosomes during establishment of cell-cell contacts in differentiating keratinocytes. We now show that induction of keratinocyte differentiation by Ca2+ is accompanied by localization of ELMO2 and ILK to Rab4- and Rab11a-containing recycling endosomes. The positioning of long-loop Rab11a-positive endosomes at areas adjacent to cell-cell contacts is disrupted in ELMO2- or ILK-deficient keratinocytes, and is associated with impaired localization of E-cadherin to cell borders. Our studies show a previously unrecognized role for ELMO2 and ILK in modulation of endosomal positioning, which may play key roles in epidermal sheet maintenance and permeability barrier function.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Junções Aderentes/metabolismo , Caderinas/genética , Proteínas do Citoesqueleto/genética , Endossomos/metabolismo , Queratinócitos/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Junções Aderentes/ultraestrutura , Animais , Animais Recém-Nascidos , Caderinas/metabolismo , Cálcio/metabolismo , Adesão Celular , Diferenciação Celular , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Proteínas do Citoesqueleto/deficiência , Endossomos/ultraestrutura , Células Epidérmicas , Epiderme/metabolismo , Expressão Gênica , Queratinócitos/citologia , Camundongos , Camundongos Transgênicos , Cultura Primária de Células , Proteínas Serina-Treonina Quinases/deficiência , Transporte Proteico , Transdução de Sinais , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab4 de Ligação ao GTP/genética , Proteínas rab4 de Ligação ao GTP/metabolismo
3.
FASEB J ; 29(2): 711-23, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25416549

RESUMO

Staphylococcus aureus is a major component of the skin microbiota and causes a large number of serious infections. S. aureus first interacts with epidermal keratinocytes to breach the epidermal barrier through mechanisms not fully understood. By use of primary keratinocytes from mice with epidermis-restricted Ilk gene inactivation and control integrin-linked kinase (ILK)-expressing littermates, we investigated the role of ILK in epidermal S. aureus invasion. Heat-killed, but not live, bacteria were internalized to Rab5- and Rab7-positive phagosomes, and incubation with keratinocyte growth factor increased their uptake 2.5-fold. ILK-deficient mouse keratinocytes internalized bacteria 2- to 4-fold less efficiently than normal cells. The reduced invasion by live S. aureus of ILK-deficient cells was restored in the presence of exogenous, constitutively active Rac1. Thus, Rac1 functions downstream from ILK during invasion. Further, invasion by S. aureus of Rac1-deficient cells was 2.5-fold lower than in normal cells. Paradoxically, staphylococcal cutaneous penetration of mouse skin explants with ILK-deficient epidermis was 35-fold higher than that of normal skin, indicating defects in epidermal barrier function in the absence of ILK. Thus, we identified an ILK-Rac1 pathway essential for bacterial invasion of keratinocytes, and established ILK as a key contributor to prevent invasive staphylococcal cutaneous infection.


Assuntos
Queratinócitos/microbiologia , Neuropeptídeos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Staphylococcus aureus/patogenicidade , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Separação Celular , Epiderme/metabolismo , Fator 7 de Crescimento de Fibroblastos/metabolismo , Citometria de Fluxo , Gentamicinas/química , Humanos , Queratinócitos/citologia , Queratinócitos/metabolismo , Camundongos , Microbiota , Microscopia de Fluorescência , Fagocitose , Proteínas Recombinantes/metabolismo , Pele/microbiologia , Infecções Estafilocócicas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
4.
Methods Mol Biol ; 2849: 135-148, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38441720

RESUMO

In this chapter, we provide a method to purify and culture embryonic melanocytic stem cells that express green fluorescent protein in a cell-type specific manner. Isolation of melanocytic lineage cell populations that are >98% pure is accomplished through the use of GFP-based fluorescence activated cell sorting. We also provide a method to culture the purified melanoblasts and to analyze their proliferation, apoptosis, and motility properties.


Assuntos
Apoptose , Movimento Celular , Proliferação de Células , Melanócitos , Animais , Camundongos , Melanócitos/citologia , Melanócitos/metabolismo , Citometria de Fluxo/métodos , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/genética , Técnicas de Cultura de Células/métodos , Separação Celular/métodos
5.
Mol Oncol ; 18(4): 969-987, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38327091

RESUMO

Immunotherapies for malignant melanoma seek to boost the anti-tumoral response of CD8+ T cells, but have a limited patient response rate, in part due to limited tumoral immune cell infiltration. Genetic or pharmacological inhibition of the pannexin 1 (PANX1) channel-forming protein is known to decrease melanoma cell tumorigenic properties in vitro and ex vivo. Here, we crossed Panx1 knockout (Panx1-/-) mice with the inducible melanoma model BrafCA, PtenloxP, Tyr::CreERT2 (BPC). We found that deleting the Panx1 gene in mice does not reduce BRAF(V600E)/Pten-driven primary tumor formation or improve survival. However, tumors in BPC-Panx1-/- mice exhibited a significant increase in the infiltration of CD8+ T lymphocytes, with no changes in the expression of early T-cell activation marker CD69, lymphocyte activation gene 3 protein (LAG-3) checkpoint receptor, or programmed cell death ligand-1 (PD-L1) in tumors when compared to the BPC-Panx1+/+ genotype. Our results suggest that, although Panx1 deletion does not overturn the aggressive BRAF/Pten-driven melanoma progression in vivo, it does increase the infiltration of effector immune T-cell populations in the tumor microenvironment. We propose that PANX1-targeted therapy could be explored as a strategy to increase tumor-infiltrating lymphocytes to boost anti-tumor immunity.


Assuntos
Melanoma , Neoplasias Cutâneas , Animais , Camundongos , Linfócitos T CD8-Positivos/metabolismo , Conexinas/genética , Conexinas/uso terapêutico , Linfócitos do Interstício Tumoral , Melanoma/patologia , Proteínas do Tecido Nervoso/genética , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias Cutâneas/patologia , Microambiente Tumoral
6.
FASEB J ; 26(10): 4218-29, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22767228

RESUMO

Phagocytic melanosome uptake by epidermal keratinocytes is a central protective mechanism against damage induced by ultraviolet radiation. Phagocytosis requires formation of pseudopodia via actin cytoskeleton rearrangements. Integrin-linked kinase (ILK) is an important modulator of actin cytoskeletal dynamics. We have examined the role of ILK in regulation of phagocytosis, using epidermal keratinocytes isolated from mice with epidermis-restricted Ilk gene inactivation. ILK-deficient cells exhibited severely impaired capacity to engulf fluorescent microspheres in response to stimulation of the keratinocyte growth factor (KGF) receptor or the protease-activated receptor-2. KGF induced ERK phosphorylation in ILK-expressing and ILK-deficient cells, suggesting that ILK is not essential for KGF receptor signaling. In contrast, KGF promoted activation of Rac1 and formation of pseudopodia in ILK-expressing, but not in ILK-deficient cells. Rac1-deficient keratinocytes also showed substantially impaired phagocytic ability, underlining the importance of ILK-dependent Rac1 function for particle engulfment. Finally, cross-modulation of KGF receptors by integrins may be another important element, as integrin ß1-deficient keratinocytes also fail to show significant phagocytosis in response to KGF. Thus, we have identified a novel signaling pathway essential for phagocytosis in keratinocytes, which involves ILK-dependent activation of Rac1 in response to KGF, resulting in the formation of pseudopodia and particle uptake.


Assuntos
Queratinócitos/metabolismo , Fagocitose/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Adenoviridae/genética , Animais , Células Cultivadas , Immunoblotting , Queratinócitos/ultraestrutura , Camundongos , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Fagocitose/genética , Proteínas Serina-Treonina Quinases/genética , Pseudópodes/metabolismo , Receptor PAR-2/genética , Receptor PAR-2/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
7.
Tissue Barriers ; : 2236007, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37459858

RESUMO

The epidermis of the skin provides a barrier between the organism and the external environment. It is constantly subjected to physical and chemical insults, and thus susceptible to wounding and to neoplastic transformation. Long-lasting epigenetic modifications in epidermal stem cells are now shown to link responses to skin injuries with cell priming for carcinoma development, through regulation of histone H2A ubiquitylation.

8.
Bio Protoc ; 13(17): e4805, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37719067

RESUMO

In this article, we provide a method to isolate embryonic melanoblasts from reporter mouse strains. The mice from which these cells are isolated are bred into the ROSA26mT/mG reporter background, which results in green fluorescent protein (GFP) expression in the targeted melanoblast population. These cells are isolated and purified by fluorescence-activated cell sorting using GFP fluorescence. We also provide a method to culture the purified melanoblasts for further analysis. This method yields > 99% purity melanoblasts specifically targeted, and can be used for a variety of studies, including gene expression, clonogenic experiments, and biological assays, such as viability, capacity for directional migration, or differentiation into melanin-producing melanocytic cells.

9.
J Invest Dermatol ; 143(8): 1509-1519.e14, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36813158

RESUMO

The channel-forming glycoprotein PANX3 functions in cutaneous wound healing and keratinocyte differentiation, but its role in maintaining skin homeostasis through aging is not yet understood. We found that PANX3 is absent in newborn skin but becomes upregulated with age. We characterized the skin of global Panx3-knockout (KO) mice and found that KO dorsal skin showed sex differences at different ages but generally had reduced dermal and hypodermal areas compared with age-matched controls. Transcriptomic analysis of the KO epidermis revealed reduced E-cadherin stabilization and Wnt signaling compared with that of wild-type, consistent with the inability of primary KO keratinocytes to adhere in culture and diminished epidermal barrier function in KO mice. We also observed increased inflammatory signaling in the KO epidermis and a higher incidence of dermatitis in aged KO mice compared with that in wild-type controls. These findings suggest that during skin aging, PANX3 is critical in the maintenance of dorsal skin architecture, keratinocyte cell-cell and cell-matrix adhesion, and inflammatory skin responses.


Assuntos
Queratinócitos , Pele , Camundongos , Animais , Feminino , Masculino , Queratinócitos/fisiologia , Epiderme , Inflamação/genética , Via de Sinalização Wnt , Camundongos Knockout
10.
Front Mol Biosci ; 9: 991612, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36267157

RESUMO

Transforming growth factor-ß (TGFß) is a ubiquitous cytokine essential for embryonic development and postnatal tissue homeostasis. TGFß signalling regulates several biological processes including cell growth, proliferation, apoptosis, immune function, and tissue repair following injury. Aberrant TGFß signalling has been implicated in tumour progression and metastasis. Tumour cells, in conjunction with their microenvironment, may augment tumourigenesis using TGFß to induce epithelial-mesenchymal transition, angiogenesis, lymphangiogenesis, immune suppression, and autophagy. Therapies that target TGFß synthesis, TGFß-TGFß receptor complexes or TGFß receptor kinase activity have proven successful in tissue culture and in animal models, yet, due to limited understanding of TGFß biology, the outcomes of clinical trials are poor. Here, we review TGFß signalling pathways, the biology of TGFß during tumourigenesis, and how protein quality control pathways contribute to the tumour-promoting outcomes of TGFß signalling.

11.
Dev Cell ; 9(2): 293-303, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16054035

RESUMO

Shh signaling induces proliferation of many cell types during development and disease, but how Gli transcription factors regulate these mitogenic responses remains unclear. By genetically altering levels of Gli activator and repressor functions in mice, we have demonstrated that both Gli functions are involved in the transcriptional control of N-myc and Cyclin D2 during embryonic hair follicle development. Our results also indicate that additional Gli-activator-dependent functions are required for robust mitogenic responses in regions of high Shh signaling. Through posttranscriptional mechanisms, including inhibition of GSK3-beta activity, Shh signaling leads to spatially restricted accumulation of N-myc and coordinated cell cycle progression. Furthermore, a temporal shift in the regulation of GSK3-beta activity occurs during embryonic hair follicle development, resulting in a synergy with beta-catenin signaling to promote coordinated proliferation. These findings demonstrate that Shh signaling controls the rapid and patterned expansion of epithelial progenitors through convergent Gli-mediated regulation.


Assuntos
Epiderme/fisiologia , Células Epiteliais/fisiologia , Proteínas Proto-Oncogênicas c-myc/fisiologia , Transativadores/fisiologia , Animais , Proliferação de Células , Ciclina D2 , Ciclinas/genética , Ciclinas/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células Epidérmicas , Epiderme/embriologia , Fase G1 , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Folículo Piloso/embriologia , Folículo Piloso/fisiologia , Proteínas Hedgehog , Fatores de Transcrição Kruppel-Like , Camundongos , Camundongos Transgênicos , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Transdução de Sinais , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Proteína Gli3 com Dedos de Zinco , beta Catenina
12.
Anal Biochem ; 398(1): 135-7, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19917260

RESUMO

Rho GTPase activation is essential in a wide variety of cellular processes. Measurement of Rho GTPase activation is difficult with limited material, such as tissues or primary cells that exhibit stringent culture requirements for growth and survival. We defined parameters to accurately and reproducibly measure RhoA activation (i.e., RhoA-GTP) in cultured primary keratinocytes in response to serum and growth factor stimulation using enzyme-linked immunosorbent assay (ELISA)-based G-LISA assays. We also established conditions that minimize RhoA-GTP in unstimulated cells without affecting viability, allowing accurate measurements of RhoA activation on stimulation or induction of exogenous GTPase expression.


Assuntos
Ensaio de Imunoadsorção Enzimática/métodos , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Células Cultivadas , Camundongos , Kit de Reagentes para Diagnóstico
13.
J Invest Dermatol ; 140(2): 425-434.e10, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31330146

RESUMO

Melanocytes are pigment-producing cells found in the skin and other tissues. Alterations in the melanocyte lineage give rise to a plethora of human diseases, from neurocristopathies and pigmentation disorders to melanoma. During embryogenesis, neural crest cell subsets give rise to two waves of melanoblasts, which migrate dorsolaterally, hone to the skin, and differentiate into melanocytes. However, the mechanisms that govern colonization of the skin by the first wave of melanoblasts are poorly understood. Here we report that targeted inactivation of the integrin-linked kinase gene in first wave melanoblasts causes defects in the ability of these cells to form long pseudopods, to migrate, and to proliferate in vivo. As a result, integrin-linked kinase-deficient melanoblasts fail to populate normally the developing epidermis and hair follicles. We also show that defects in motility and dendricity occur upon integrin-linked kinase gene inactivation in mature melanocytes, causing abnormalities in cell responses to the extracellular matrix substrates collagen I and laminin 332. Significantly, the ability to form long protrusions in mutant cells in response to collagen is restored in the presence of constitutively active Rac1, suggesting that an integrin-linked kinase-Rac1 nexus is likely implicated in melanocytic cell establishment, dendricity, and functions in the skin.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/fisiologia , Melanócitos/fisiologia , Crista Neural/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Linhagem Celular , Movimento Celular/fisiologia , Embrião de Mamíferos , Matriz Extracelular/metabolismo , Folículo Piloso/citologia , Folículo Piloso/embriologia , Folículo Piloso/metabolismo , Camundongos , Camundongos Knockout , Neuropeptídeos/metabolismo , Cultura Primária de Células , Proteínas Serina-Treonina Quinases/genética , Pseudópodes/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
14.
Tissue Barriers ; 8(3): 1765633, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32479135

RESUMO

Chronic inflammatory skin disorders are frequently associated with impaired skin barrier function. Selective phosphodiesterase-4 (PDE4) inhibition constitutes an effective therapeutic strategy for the treatment of inflammatory skin diseases. We now report the pharmacological anti-inflammatory profile of DRM02, a novel pyrazolylbenzothiazole derivative with selective in vitro inhibitory activity toward PDE4 isoforms A, B and D. DRM02 treatment of cultured primary human and mouse epidermal keratinocytes interfered with pro-inflammatory cytokine production elicited by interleukin-1α and tumor necrosis factor-α. Similarly, DRM02 inhibited the production of pro-inflammatory cytokines by human peripheral blood mononuclear cells ex vivo and cultured THP-1 monocyte-like cells, with IC50 values of 0.6-14 µM. These anti-inflammatory properties of DRM02 were associated with dose-dependent repression of nuclear factor-κB (NF-κB) transcriptional activity. In skin inflammation in vivo mouse models, topically applied DRM02 inhibited the acute response to phorbol ester and induced Th2-type contact hypersensitivity reactivity. Further, DRM02 also decreased cutaneous clinical changes and expression of Th17 immune pathway cytokines in a mouse model of psoriasis evoked by repeated topical imiquimod application. Thus, the overall pharmacological profiling of the PDE4 inhibitor DRM02 has revealed its potential as a topical therapy for inflammatory skin disorders and restoration of skin homeostasis.


Assuntos
Anti-Inflamatórios/farmacologia , Dermatite/tratamento farmacológico , Inibidores da Fosfodiesterase 4/farmacologia , Pele/efeitos dos fármacos , Animais , Anti-Inflamatórios/uso terapêutico , Células Cultivadas , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Citocinas/metabolismo , Feminino , Células HaCaT , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , Inibidores da Fosfodiesterase 4/uso terapêutico , Pele/metabolismo , Células THP-1
15.
Mol Biol Cell ; 31(8): 768-781, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32049584

RESUMO

Melanosomes are melanin-containing organelles that provide pigmentation and protection from solar UV radiation to the skin. In melanocytes, melanosomes mature and traffic to dendritic tips, where they are transferred to adjacent epidermal keratinocytes through pathways that involve microtubule networks and the actin cytoskeleton. However, the role of scaffold proteins in these processes is poorly understood. Integrin-linked kinase (ILK) is a scaffold protein that regulates microtubule stability and F-actin dynamics. Here we show that ILK is necessary for normal trafficking of melanosomes along microtubule tracks. In the absence of ILK, immature melanosomes are not retained in perinuclear regions, and mature melanosome trafficking along microtubule tracks is impaired. These deficits can be attenuated by microtubule stabilization. Microtubules are also necessary for the formation of dendrites in melanocytes, and Ilk inactivation reduces melanocyte dendricity. Activation of glycogen synthase kinase-3 (GSK-3) interferes with microtubule assembly. Significantly, inhibition of GSK-3 activity or exogenous expression of the GSK-3 substrate collapsin response mediator protein 2 (CRMP2) in ILK-deficient melanocytes restored dendricity. ILK is also required for normal melanin transfer, and GSK-3 inhibition in melanocytes partially restored melanin transfer to neighboring keratinocytes. Thus, our work shows that ILK is a central modulator of melanosome movements in primary epidermal melanocytes and identifies ILK and GSK-3 as important modulators of melanin transfer to keratinocytes, a key process for epidermal UV photoprotection.


Assuntos
Melaninas/metabolismo , Melanócitos/metabolismo , Melanossomas/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Animais , Células Cultivadas , Dendritos/ultraestrutura , Genes Reporter , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Queratinócitos/metabolismo , Melanócitos/ultraestrutura , Camundongos , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Proteínas do Tecido Nervoso/metabolismo , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Proteínas Recombinantes/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
16.
Dev Cell ; 7(5): 763-9, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15525537

RESUMO

Heterotrimeric G protein alpha subunits, RGS proteins, and GoLoco motif proteins have been recently implicated in the control of mitotic spindle dynamics in C. elegans and D. melanogaster. Here we show that "regulator of G protein signaling-14" (RGS14) is expressed by the mouse embryonic genome immediately prior to the first mitosis, where it colocalizes with the anastral mitotic apparatus of the mouse zygote. Loss of Rgs14 expression in the mouse zygote results in cytofragmentation and failure to progress to the 2-cell stage. RGS14 is found in all tissues and segregates to the nucleus in interphase and to the mitotic spindle and centrioles during mitosis. Alteration of RGS14 levels in exponentially proliferating cells leads to cell growth arrest. Our results indicate that RGS14 is one of the earliest essential product of the mammalian embryonic genome yet described and has a general role in mitosis.


Assuntos
Divisão Celular/fisiologia , Mamíferos/fisiologia , Proteínas RGS/fisiologia , Fuso Acromático/química , Zigoto/fisiologia , Animais , Anticorpos Monoclonais/metabolismo , Blastocisto/citologia , Fluoresceína-5-Isotiocianato , Corantes Fluorescentes , Deleção de Genes , Vetores Genéticos , Células HeLa , Heterozigoto , Humanos , Hidrazinas , Camundongos , Camundongos Knockout , Microscopia de Fluorescência , Dados de Sequência Molecular , Proteínas RGS/genética , Proteínas RGS/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos
17.
Methods Mol Biol ; 1879: 243-256, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29582376

RESUMO

In this article, we provide a method to isolate primary epidermal melanocytes from reporter mice, which also allow targeted gene inactivation. The mice from which these cells are isolated are bred into a Rosa26mT/mG reporter background, which results in GFP expression in the targeted melanocytic cell population. These cells are isolated and cultured to >95% purity. The cells can be used for gene expression studies, clonogenic experiments, and biological assays, such as capacity for migration. Melanocytes are slow moving cells, and we also provide a method to measure motility using individual cell tracking and data analysis.


Assuntos
Movimento Celular/fisiologia , Células Epidérmicas/metabolismo , Células Epidérmicas/fisiologia , Expressão Gênica/fisiologia , Proteínas de Fluorescência Verde/metabolismo , Melanócitos/metabolismo , Melanócitos/fisiologia , Animais , Bioensaio/métodos , Rastreamento de Células/métodos , Camundongos
18.
J Mol Cell Biol ; 11(11): 994-1005, 2019 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-30726988

RESUMO

NUMB is an evolutionarily conserved protein that plays an important role in cell adhesion, migration, polarity, and cell fate determination. It has also been shown to play a role in the pathogenesis of certain cancers, although it remains controversial whether NUMB functions as an oncoprotein or tumor suppressor. Here, we show that NUMB binds to anaplastic lymphoma kinase (ALK), a receptor tyrosine kinase aberrantly activated in several forms of cancer, and this interaction regulates the endocytosis and activity of ALK. Intriguingly, the function of the NUMB-ALK interaction is isoform-dependent. While both p66-NUMB and p72-NUMB isoforms are capable of mediating the endocytosis of ALK, the former directs ALK to the lysosomal degradation pathway, thus decreasing the overall ALK level and the downstream MAP kinase signal. In contrast, the p72-NUMB isoform promotes ALK recycling back to the plasma membrane, thereby maintaining the kinase in its active state. Our work sheds light on the controversial role of different isoforms of NUMB in tumorigenesis and provides mechanistic insight into ALK regulation.


Assuntos
Quinase do Linfoma Anaplásico/metabolismo , Endocitose/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Sequência de Aminoácidos , Quinase do Linfoma Anaplásico/genética , Animais , Sítios de Ligação , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Humanos , Hormônios Juvenis/química , Hormônios Juvenis/genética , Hormônios Juvenis/metabolismo , Proteínas de Membrana/química , Proteínas do Tecido Nervoso/química , Ligação Proteica , Isoformas de Proteínas , Transporte Proteico
19.
Cancers (Basel) ; 11(3)2019 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-30909648

RESUMO

Melanoma is one of the most aggressive types of tumors and exhibits high metastatic potential. Fes-related (FER) kinase is a non-receptor tyrosine kinase that has been implicated in growth and metastasis of various epithelial tumors. In this study, we have examined the role that FER kinase plays in melanoma at the molecular level. FER-depleted melanoma cells exhibit impaired Wnt/ß-catenin pathway activity, as well as multiple proteomic changes, which include decreased abundance of L1-cell adhesion molecule (L1-CAM). Consistent with the pro-metastatic functions of these pathways, we demonstrate that depletion of FER kinase decreases melanoma growth and formation of distant metastases in a xenograft model. These findings indicate that FER is an important positive regulator of melanoma metastasis and a potential target for innovative therapies.

20.
Cancers (Basel) ; 11(1)2019 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-30654593

RESUMO

Pannexin 1 (PANX1) is a channel-forming glycoprotein expressed in many tissues including the skin. PANX1 channels allow the passage of ions and molecules up to 1 kDa, including ATP and other metabolites. In this study, we show that PANX1 is highly expressed in human melanoma tumors at all stages of disease progression, as well as in patient-derived cells and established melanoma cell lines. Reducing PANX1 protein levels using shRNA or inhibiting channel function with the channel blockers, carbenoxolone (CBX) and probenecid (PBN), significantly decreased cell growth and migration, and increased melanin production in A375-P and A375-MA2 cell lines. Further, treatment of A375-MA2 tumors in chicken embryo xenografts with CBX or PBN significantly reduced melanoma tumor weight and invasiveness. Blocking PANX1 channels with PBN reduced ATP release in A375-P cells, suggesting a potential role for PANX1 in purinergic signaling of melanoma cells. In addition, cell-surface biotinylation assays indicate that there is an intracellular pool of PANX1 in melanoma cells. PANX1 likely modulates signaling through the Wnt/ß-catenin pathway, because ß-catenin levels were significantly decreased upon PANX1 silencing. Collectively, our findings identify a role for PANX1 in controlling growth and tumorigenic properties of melanoma cells contributing to signaling pathways that modulate melanoma progression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA