Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2402842, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38923165

RESUMO

The nacre-inspired multi-nanolayer structure offers a unique combination of advanced mechanical properties, such as strength and crack tolerance, making them highly versatile for various applications. Nevertheless, a significant challenge lies in the current fabrication methods, which is difficult to create a scalable manufacturing process with precise control of hierarchical structure. In this work, a novel strategy is presented to regulate nacre-like multi-nanolayer films with the balance mechanical properties of stiffness and toughness. By utilizing a co-continuous phase structure and an extensional stress field, the hierarchical nanolayers is successfully constructed with tunable sizes using a scalable processing technique. This strategic modification allows the robust phase to function as nacre-like platelets, while the soft phase acts as a ductile connection layer, resulting in exceptional comprehensive properties. The nanolayer-structured films demonstrate excellent isotropic properties, including a tensile strength of 113.5 MPa in the machine direction and 106.3 MPa in a transverse direction. More interestingly, these films unprecedentedly exhibit a remarkable puncture resistance at the same time, up to 324.8 N mm-1, surpassing the performance of other biodegradable films. The scalable fabrication strategy holds significant promise in designing advanced bioinspired materials for diverse applications.

2.
Environ Sci Technol ; 58(4): 1966-1975, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38153028

RESUMO

Polysaccharides in extracellular polymeric substances (EPS) can form a hybrid matrix network with proteins, impeding waste-activated sludge (WAS) fermentation. Amino sugars, such as N-acetyl-d-glucosamine (GlcNAc) polymers and sialic acid, are the non-negligible components in the EPS of aerobic granules or biofilm. However, the occurrence of amino sugars in WAS and their degradation remains unclear. Thus, amino sugars (∼6.0%) in WAS were revealed, and the genera of Lactococcus and Zoogloea were identified for the first time. Chitin was used as the substrate to enrich a chitin-degrading consortium (CDC). The COD balances for methane production ranged from 83.3 and 95.1%. Chitin was gradually converted to oligosaccharides and GlcNAc after dosing with the extracellular enzyme. After doing enriched CDC in WAS, the final methane production markedly increased to 60.4 ± 0.6 mL, reflecting an increase of ∼62%. Four model substrates of amino sugars (GlcNAc and sialic acid) and polysaccharides (cellulose and dextran) could be used by CDC. Treponema (34.3%) was identified as the core bacterium via excreting chitinases (EC 3.2.1.14) and N-acetyl-glucosaminidases (EC 3.2.1.52), especially the genetic abundance of chitinases in CDC was 2.5 times higher than that of WAS. Thus, this study provides an elegant method for the utilization of amino sugar-enriched organics.


Assuntos
Quitinases , Esgotos , Amino Açúcares , Fermentação , Ácido N-Acetilneuramínico , Quitina/química , Quitina/metabolismo , Polissacarídeos , Quitinases/química , Quitinases/metabolismo , Metano
3.
Environ Sci Technol ; 58(32): 14282-14292, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39083369

RESUMO

Biodegradable flocculants are rarely used in waste activated sludge (WAS) fermentation. This study introduces an alginate-based biodegradable flocculant (ABF) to enhance both the dewatering and degradation of WAS during its fermentation. Alginate was identified in structural extracellular polymeric substances (St-EPS) of WAS, with alginate-producing bacteria comprising ∼4.2% of the total bacterial population in WAS. Owing to its larger floc size, higher contact angle, and lower free energy resulting from the Lewis acid-base interaction, the addition of the prepared ABF with a network structure significantly improved the dewaterability of WAS and reduced capillary suction time (CST) by 72%. The utilization of ABF by an enriched alginate-degrading consortium (ADC) resulted in a 35.5% increase in the WAS methane yield owing to its higher hydrolytic activity on both ABF and St-EPS. Additionally, after a 30 day fermentation, CST decreased by 62% owing to the enhanced degradation of St-EPS (74.4%) and lower viscosity in the WAS + ABF + ADC group. The genus Bacteroides, comprising 12% of ADC, used alginate lyase (EC 4.2.2.3) and pectate lyase (EC 4.2.2.2 and EC 4.2.2.9) to degrade alginate and polygalacturonate in St-EPS, respectively. Therefore, this study introduces a new flocculant and elucidates its dual roles in enhancing both the dewaterability and degradability of WAS. These advancements improve WAS fermentation, resulting in higher methane production and lower CSTs.


Assuntos
Alginatos , Fermentação , Floculação , Esgotos , Anaerobiose , Eliminação de Resíduos Líquidos , Biodegradação Ambiental
4.
BMC Palliat Care ; 23(1): 150, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877477

RESUMO

BACKGROUND: Clinical evidence for the rapidity and effectiveness of fentanyl buccal soluble film (FBSF) in reducing pain intensity of breakthrough cancer pain (BTcP) remains inadequate. This study aimed to evaluate the efficacy of FBSF proportional to the around-the-clock (ATC) opioid regimens in rapidly relieving the intensity of BTcP episodes by determining the percentage of patients requiring further dose titration. METHODS: The study procedure included a dose-finding period followed by a 14-day observation period. Pain intensity was recorded with a Numeric Rating Scale (NRS) at onset and 5, 10, 15, and 30 min after FBSF self-administration. Meaningful pain relief was defined as the final NRS score ≤ 3. Satisfaction survey was conducted for each patient after treatment using the Global Satisfaction Scale. RESULTS: A total of 63 BTcP episodes occurred in 30 cancer patients. Only one patient required rescue medication at first BTcP episode and then achieved meaningful pain relief after titrating FBSF by 200 µg. Most BTcP episodes relieved within 10 min. Of 63 BTcP episodes, 30 (47.6%), 46 (73.0%), and 53 (84.1%) relieved within 5, 10, and 15 min after FBSF administration. Only grade 1/2 adverse events were reported, including somnolence, malaise, and dizziness. Of the 63 BTcP episodes, 82.6% were rated as excellent/good satisfaction with FBSF. CONCLUSION: FBSF can be administrated "on demand" by cancer patients at the onset of BTcP, providing rapid analgesia by achieving meaningful pain relief within 10 min. TRIAL REGISTRATION: This study was retrospectively registered 24 December, 2021 at Clinicaltrial.gov (NCT05209906): https://clinicaltrials.gov/study/NCT05209906 .


Assuntos
Analgésicos Opioides , Dor Irruptiva , Fentanila , Humanos , Fentanila/uso terapêutico , Fentanila/administração & dosagem , Feminino , Masculino , Dor Irruptiva/tratamento farmacológico , Dor Irruptiva/etiologia , Pessoa de Meia-Idade , Analgésicos Opioides/uso terapêutico , Analgésicos Opioides/administração & dosagem , Idoso , Administração Bucal , Adulto , Medição da Dor/métodos , Dor do Câncer/tratamento farmacológico , Manejo da Dor/métodos , Manejo da Dor/normas , Manejo da Dor/estatística & dados numéricos , Neoplasias/complicações , Neoplasias/tratamento farmacológico , Idoso de 80 Anos ou mais
5.
Nano Lett ; 23(15): 7188-7196, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37499095

RESUMO

The integration of functional modules at the molecular level into RNA nanostructures holds great potential for expanding their applications. However, the quantitative integration of nucleoside analogue molecules into RNA nanostructures and their impact on the structure and function of RNA nanostructures remain largely unexplored. Here, we report a transcription-based approach to controllably integrate multiple nucleoside analogues into a 2000 nucleotide (nt) single-stranded RNA (ssRNA) origami nanostructure. The resulting integrated ssRNA origami preserves the morphology and biostability of the original ssRNA origami. Moreover, the integration of nucleoside analogues introduced new biomedical functions to ssRNA origamis, including innate immune recognition and regulation after the precise integration of epigenetic nucleoside analogues and synergistic effects on tumor cell killing after integration of therapeutic nucleoside analogues. This study provides a promising approach for the quantitative integration of functional nucleoside analogues into RNA nanostructures at the molecular level, thereby offering valuable insights for the development of multifunctional ssRNA origamis.


Assuntos
Nanoestruturas , Nanotecnologia , Nanotecnologia/métodos , Nucleosídeos/farmacologia , Nanoestruturas/química , RNA/química , Epigênese Genética , Conformação de Ácido Nucleico
6.
Angew Chem Int Ed Engl ; 63(28): e202404360, 2024 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-38676693

RESUMO

Despite great progress in the construction of non-equilibrium systems, most approaches do not consider the structure of the fuel as a critical element to control the processes. Herein, we show that the amino acid side chains (A, F, Nal) in the structure of abiotic phosphates can direct assembly and reactivity during transient structure formation. The fuels bind covalently to substrates and subsequently influence the structures in the assembly process. We focus on the ways in which the phosphate esters guide structure formation and how structures and reactivity cross regulate when constructing assemblies. Through the chemical functionalization of energy-rich aminoacyl phosphate esters, we are able to control the yield of esters and thioesters upon adding dipeptides containing tyrosine or cysteine residues. The structural elements around the phosphate esters guide the lifetime of the structures formed and their supramolecular assemblies. These properties can be further influenced by the peptide sequence of substrates, incorporating anionic, aliphatic and aromatic residues. Furthermore, we illustrate that oligomerization of esters can be initiated from a single aminoacyl phosphate ester incorporating a tyrosine residue (Y). These findings suggest that activated amino acids with varying reactivity and energy contents can pave the way for designing and fabricating structured fuels.


Assuntos
Peptídeos , Fosfatos , Fosfatos/química , Peptídeos/química , Ésteres/química , Estrutura Molecular
7.
J Am Chem Soc ; 145(12): 6880-6887, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36931284

RESUMO

In life, molecular architectures, like the cytoskeletal proteins or the nucleolus, catalyze the conversion of chemical fuels to perform their functions. For example, tubulin catalyzes the hydrolysis of GTP to form a dynamic cytoskeletal network. In contrast, myosin uses the energy obtained by catalyzing the hydrolysis of ATP to exert forces. Artificial examples of such beautiful architectures are scarce partly because synthetic chemically fueled reaction cycles are relatively rare. Here, we introduce a new chemical reaction cycle driven by the hydration of a carbodiimide. Unlike other carbodiimide-fueled reaction cycles, the proposed cycle forms a transient 5(4H)-oxazolone. The reaction cycle is efficient in forming the transient product and is robust to operate under a wide range of fuel inputs, pH, and temperatures. The versatility of the precursors is vast, and we demonstrate several molecular designs that yield chemically fueled droplets, fibers, and crystals. We anticipate that the reaction cycle can offer a range of other assemblies and, due to its versatility, can also be incorporated into molecular motors and machines.

8.
J Am Chem Soc ; 145(31): 17112-17124, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37498993

RESUMO

Ligands targeting nucleic acid-sensing receptors activate the innate immune system and play a critical role in antiviral and antitumoral therapy. However, ligand design for in situ stability, targeted delivery, and predictive immunogenicity is largely hampered by the sophisticated mechanism of the nucleic acid-sensing process. Here, we utilize single-stranded RNA (ssRNA) origami with precise structural designability as nucleic acid sensor-based ligands to achieve improved biostability, organelle-level targeting, and predictive immunogenicity. The natural ssRNAs self-fold into compact nanoparticles with defined shapes and morphologies and exhibit resistance against RNase digestion in vitro and prolonged retention in macrophage endolysosomes. We find that programming the edge length of ssRNA origami can precisely regulate the degree of macrophage activation via a toll-like receptor-dependent pathway. Further, we demonstrate that the ssRNA origami-based ligand elicits an anti-tumoral immune response of macrophages and neutrophils in the tumor microenvironment and retards tumor growth in the mouse pancreatic tumor model. Our ssRNA origami strategy utilizes structured RNA ligands to achieve predictive immune activation, providing a new solution for nucleic acid sensor-based ligand design and biomedical applications.


Assuntos
RNA , Receptor 7 Toll-Like , Animais , Camundongos , Ligantes , RNA/metabolismo , Macrófagos/metabolismo , Imunidade Inata
9.
J Am Chem Soc ; 145(48): 26086-26094, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-37992133

RESUMO

Nature chose phosphates to activate amino acids, where reactive intermediates and complex machinery drive the construction of polyamides. Outside of biology, the pathways and mechanisms that allow spontaneous and selective peptide elongation in aqueous abiotic systems remain unclear. Herein we work to uncover those pathways by following the systems chemistry of aminoacyl phosphate esters, synthetic counterparts of aminoacyl adenylates. The phosphate esters act as solubility tags, making hydrophobic amino acids and their oligomers soluble in water and enabling selective elongation and different pathways to emerge. Thus, oligomers up to dodecamers were synthesized in one flask and on the minute time scale, where consecutive additions activated autonomous phase changes. Depending on the pathway, the resulting phases initially carry nonpolar peptides and amphiphilic oligomers containing phosphate esters. During elongation and phosphate release, shorter oligomers dominate in solution, while the aggregated phase favors the presence of longer oligomers due to their self-assembly propensity. Furthermore we demonstrated that the solution phases can be isolated and act as a new environment for continuous elongation, by adding various phosphate esters. These findings suggest that the systems chemistry of aminoacyl phosphate esters can activate a selection mechanism for peptide bond formation by merging aqueous synthesis and self-assembly.


Assuntos
Peptídeos , Água , Água/química , Peptídeos/química , Organofosfatos , Aminoácidos/química , Fosfatos/química , Ésteres
10.
Small ; 19(31): e2204365, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36135725

RESUMO

Smart tactile sensing materials have excellent development prospects, including wearable health-monitoring equipment and energy collection. Hydrogels have received extensive attention in tactile sensing owing to their transparency and high elasticity. In this study, highly crosslinked hydrogels are fabricated by chemically crosslinking polyacrylamide with lithium magnesium silicate and decorated with carbon quantum dots. Magnesium lithium silicate provides abundant covalent bonds and improves the mechanical properties of the hydrogels. The luminescent properties endowed by the carbon dots further broaden the application of hydrogels for realizing flexible electronics. The hydrogel-based strain sensor exhibits excellent sensitivity (gauge factor 2.6), a broad strain response range (0-2000%), good cyclicity, and durability (1250). Strain sensors can be used to detect human motions. More importantly, the hydrogel can also be used as a flexible self-supporting triboelectric electrode for effectively detecting pressure in the range of 1-25 N and delivering a short-circuit current (ISC ) of 2.6 µA, open-circuit voltage (VOC ) of 115 V, and short-circuit transfer charge (QSC ) of 29 nC. The results reveal new possibilities for human-computer interactions and electronic robot skins.


Assuntos
Carbono , Dispositivos Eletrônicos Vestíveis , Humanos , Hidrogéis/química , Lítio , Tato , Condutividade Elétrica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA