Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Inorg Chem ; 63(1): 576-592, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38110302

RESUMO

Herein, we describe the solid-state fusion of rod-shaped to honeycomb-shaped cadmium oxide particles (CdO NPs) caused by the process of repeated exposure to acoustic shock waves. Significant changes have been observed in structurally and morphologically dependent properties. For instance, at the 200-shocked condition, the high-pressure CdO-B2 phase is present as a secondary phase wherein all of the rod-shaped particles have been transformed into honeycomb-shaped CdO particles which possess comparatively higher specific-capacitance than CdO nanorods (NRs). The computed specific capacitance values for the 0, 100, and 200 shocked samples at a scan rate of 100 m V s-1 are computed to be 433, 415, and 583 F g-1, respectively. The second-stage decomposition temperature points of the CdO NPs have significantly increased in accordance with the morphological changes from rod to honeycomb patterns such that the values are 343, 526, and 534 °C, respectively, for 0, 100, and 200 shocked conditions. Note that such honeycomb nanostructured CdO particles by shock-wave processing have never been observed, to date. Due to the superior energy storage abilities as well as the spectacular high thermal stability of the honeycomb CdO nanostructures compared to CdO NRs, shocked CdO with honeycomb nanostructures can be considered as energy storage materials.

2.
J Phys Chem A ; 128(16): 3095-3107, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38600671

RESUMO

In this context, we have reexamined the acoustical shock wave-induced amorphous-glassy-crystalline-amorphous phase transitions in the Li2SO4 sample under 0, 1, 2, and 3 shocked conditions by implementing the detailed Raman spectroscopic approach. The recorded Raman spectroscopic data clearly reveal that the transition from the amorphous-glassy-crystalline state occurs because of a significant reduction of the translational disorder of lithium cations, particularly [Li (2)] ions wherein a slight reduction of the librational disorder of SO4 anions takes place, whereas the crystalline to amorphous transition occurs only at the third shocked condition because of the librational disorder of SO4 anions. The double degenerate υ2 and υ4 Raman modes provide a clear indication of the occurrence of the librational disorder of SO4 anions at the third shocked condition. Followed by the internal Raman modes, a detailed discussion is provided on the external Raman modes of the Li ions and SO4 ions with respect to the observed phase transitions, wherein it is found that the regions of lattice modes are significantly altered at each and every point of phase transition. Furthermore, the thermal and magnetic measurements have been performed for the above-mentioned state of Li2SO4 samples, whereby the obtained results of the magnetic loops and the thermal property resemble the observed structural transitions with respect to the number of shock pulses such that the inter-relationship of the structure-electrical-magnetic-thermal properties of Li2SO4 could be explored.

3.
Inorg Chem ; 62(41): 16782-16793, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37775280

RESUMO

In this work, we presented the first report on the high-pressure structural stability and electrical transport characteristics in WSSe under different hydrostatic environments through Raman spectroscopy, electrical conductivity, and high-resolution transmission electron microscopy (HRTEM) coupled with first-principles theoretical calculations. For nonhydrostatic conditions, WSSe endured a phase transition at 15.2 GPa, followed by a semiconductor-to-metal crossover at 25.3 GPa. Furthermore, the bandgap closure was accounted for the metallization of WSSe as derived from theoretical calculations. Under hydrostatic conditions, ∼ 2.0 GPa pressure hysteresis was detected for the emergence of phase transition and metallization in WSSe because of the feeble deviatoric stress. Upon depressurization, the reversibility of the phase transition was substantiated by those of microscopic HRTEM observations under different hydrostatic environments. Our high-pressure investigation on WSSe advances the insightful understanding of the crystalline structure and electronic properties for the Janus transition-metal dichalcogenide (TMD) family and boosts prospective developments in functional devices.

4.
Inorg Chem ; 61(12): 4852-4864, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35289613

RESUMO

High-pressure structural, vibrational, and electrical transport properties of CrCl3 were investigated by means of Raman spectroscopy, electrical conductivity, and high-resolution transmission electron microscopy under different hydrostatic environments using the diamond anvil cell in conjunction with the first-principles theoretical calculations up to 50.0 GPa. The isostructural phase transition of CrCl3 occurred at 9.9 GPa under nonhydrostatic conditions. As pressure was increased up to 29.8 GPa, CrCl3 underwent an electronic topological transition accompanied by a metallization transformation due to the discontinuities in the Raman scattering and electrical conductivity, which is possibly belonging to a typical first-order metallization phase transition as deduced from first-principles theoretical calculations. As for the hydrostatic condition, a ∼2.0 GPa pressure delay in the occurrence of two corresponding transformations of CrCl3 was observed owing to the different deviatoric stress. Upon decompression, we found that the phase transformation from the metal to semiconductor in CrCl3 is of good reversibility, and the obvious pressure hysteresis effect is observed under different hydrostatic environments. All of the obtained results on the structural, vibrational, and electrical transport characterizations of CrCl3 under high pressure can provide a new insight into the high-pressure behaviors of representative chromium trihalides CrX3 (X = Br and I) under different hydrostatic environments.

5.
Guang Pu Xue Yu Guang Pu Fen Xi ; 35(9): 2588-95, 2015 Sep.
Artigo em Zh | MEDLINE | ID: mdl-26669173

RESUMO

In-situ experimental results on the elastic wave velocity of Earth materials at high pressure and high temperature in combination with data from seismic observation can help to inverse the chemical composition, state and migration of materials in Earth's interior, providing an important approach to explore information of deep earth. Applying the Brillouin scattering into the Diamond Anvil Cell (DAC) to obtain the in situ elastic wave velocities of minerals, is the important approach to investigate elastic properties of Earth's Interior. With the development of DAC technology, on the one hand, the high temperature and high pressure experimental environment to simulate different layers of the earth can be achieved; on the other hand, the optical properties of DAC made many kinds of optical analysis and test methods have been widely applied in this research field. In order to gain the elastic wave velocity under high temperature and high pressure, the accurate experimental pressure and heating temperature of the sample in the cavity should be measured and calibrated first, then the scattering signal needs to dealt with, using the Brillouin frequency shift to calculate the velocity in the sample. Combined with the lattice constants obtained from X ray technique, by a solid elastic theory, all the elastic parameters of minerals can be solved. In this paper, firstly, application of methods based on optical spectrum such as Brillouin and Raman scattering in elasticity study on materials in Earth's interior, and the basic principle and research progress of them in the velocity measurement, pressure and temperature calibration are described in detail. Secondly, principle and scope of application of two common methods of spectral pressure calibration (fluorescence and Raman spectral pressure standard) are analyzed, in addition with introduce of the application of two conventional means of temperature calibration (blackbody radiation and Raman temperature scale) in temperature determination. Lastly, geophysical applications of mineral elasticity are discussed on the basis of the recent research results derive from Brillouin scattering system of wave velocities for major minerals in Earth's lower mantle (perovskite, ferropericlase, etc.), and the future research work is inspected.

6.
Dalton Trans ; 52(21): 7290-7301, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37170875

RESUMO

High-pressure structural, magnetic and electrical transport characteristics of CrBr3 were synthetically investigated using Raman scattering, electrical conductivity, high-resolution transmission electron microscopy (HRTEM) and first-principles theoretical calculations during compression and decompression under different hydrostatic conditions. Upon pressurization, CrBr3 underwent a second-order structural transition at 9.5 GPa, followed by the semiconductor-to-metal and magnetic switching at 25.9 GPa under non-hydrostatic conditions, whereas, an obvious pressure hysteresis of ∼3.0 GPa was detected in the occurrence of structural transitions and metallization under hydrostatic conditions due to the deviatoric stress. Upon decompression, the structural and electronic transitions of CrBr3 under different hydrostatic conditions were of good reversibility with a considerable pressure sluggishness of ∼5.0 GPa, which was corroborated well by the microstructural observation with HRTEM. Our systematic high-pressure investigation on CrBr3 not only reveals its underlying application in spintronic, magnetic and electronic devices but also advances the understanding of the physicochemical behaviors for 2D magnetic materials.

7.
RSC Adv ; 12(4): 2454-2461, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35425242

RESUMO

A series of in situ high-pressure Raman spectroscopy and electrical conductivity experiments have been performed to investigate the vibrational and electrical transport properties of SnS2 under non-hydrostatic and hydrostatic environments. Upon compression, an coupled structural-electronic transition in SnS2 occurred at 30.2 GPa under non-hydrostatic conditions, which was evidenced by the splitting of the Eg mode and the discontinuities in Raman shifts, Raman full width at half maximum (FWHM) and electrical conductivity. However, the coupled structural-electronic transition took place at a higher pressure of 33.4 GPa under hydrostatic conditions, which may be due to the influence of the pressure medium. Furthermore, our first-principles theoretical calculations results revealed that the bandgap energy of SnS2 decreased slowly with increasing pressure and it closed in the pressure range of 30-40 GPa, which agreed well with our Raman spectroscopy and electrical conductivity results. Upon decompression, the recoverable Raman peaks and electrical conductivity indicated that the coupled structural-electronic transition was reversible, which was further confirmed by our HRTEM observations.

8.
Materials (Basel) ; 13(2)2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31952310

RESUMO

In this paper, we present the recent progress in the experimental studies of the electrical conductivity of dominant nominally anhydrous minerals in the upper mantle and mantle transition zone of Earth, namely, olivine, pyroxene, garnet, wadsleyite and ringwoodite. The main influence factors, such as temperature, pressure, water content, oxygen fugacity, and anisotropy are discussed in detail. The dominant conduction mechanisms of Fe-bearing silicate minerals involve the iron-related small polaron with a relatively large activation enthalpy and the hydrogen-related defect with lower activation enthalpy. Specifically, we mainly focus on the variation of oxygen fugacity on the electrical conductivity of anhydrous and hydrous mantle minerals, which exhibit clearly different charge transport processes. In representative temperature and pressure environments, the hydrogen of nominally anhydrous minerals can tremendously enhance the electrical conductivity of the upper mantle and transition zone, and the influence of trace structural water (or hydrogen) is substantial. In combination with the geophysical data of magnetotelluric surveys, the laboratory-based electrical conductivity measurements can provide significant constraints to the water distribution in Earth's interior.

9.
Proc Jpn Acad Ser B Phys Biol Sci ; 85(10): 466-75, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20009379

RESUMO

Electrical conductivity of minerals is sensitive to water content and hence can be used to infer the water content in the mantle. However, previous studies to infer the water content in the upper mantle were based on pure olivine model of the upper mantle. Influence of other minerals particularly that of orthopyroxene needs to be included to obtain a better estimate of water content in view of the high water solubility in this mineral. Here we report new results of electrical conductivity measurements on orthopyroxene, and apply these results to estimate the water content of the upper mantle of Earth. We found that the electrical conductivity of orthopyroxene is enhanced by the addition of water in a similar way as other minerals such as olivine and pyrope garnet. Using these new results, we calculate the electrical conductivity of pyrolite mantle as a function of water content and temperature incorporating the temperature and water fugacity-dependent hydrogen partitioning. Reported values of asthenosphere conductivity of 4x10(-2)-10(-1) S/m corresponds to the water content of 0.01-0.04 wt%, a result in good agreement with the petrological model of the upper mantle.


Assuntos
Planeta Terra , Condutividade Elétrica , Minerais/química , Água/análise , Água/química , Compostos de Ferro/química , Compostos de Magnésio/química , Silicatos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
10.
Materials (Basel) ; 12(6)2019 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-30909432

RESUMO

The experimental study on the electrical conductivities of schists with various contents of alkali ions (CA = K2O + Na2O = 3.94, 5.17, and 5.78 wt.%) were performed at high temperatures (623⁻1073 K) and high pressures (0.5⁻2.5 GPa). Experimental results indicated that the conductivities of schist markedly increased with the rise of temperature. Pressure influence on the conductivities of schist was extremely weak at the entire range of experimental temperatures. Alkali ion content has a significant influence on the conductivities of the schist samples in a lower temperature range (623⁻773 K), and the influence gradually decreases with increasing temperature in a higher temperature range (823⁻1073 K). In addition, the activation enthalpies for the conductivities of three schist samples were fitted as being 44.16⁻61.44 kJ/mol. Based on the activation enthalpies and previous studies, impurity alkaline ions (K⁺ and Na⁺) were proposed as the charge carriers of schist. Furthermore, electrical conductivities of schist (10-3.5⁻10-1.5 S/m) were lower than those of high-conductivity layers under the Tibetan Plateau (10-1⁻10° S/m). It was implied that the presence of schist cannot cause the high-conductivity anomalies in the middle to lower crust beneath the Tibetan Plateau.

11.
Rev Sci Instrum ; 90(6): 066103, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31255034

RESUMO

High-pressure phase stability of gallium phosphide was explored under different hydrostatic environments up to 40.0 GPa in a diamond anvil cell. Two irreversible phase transitions from the semiconductor to metal to an amorphous state appear at 19.8 and 31.5 GPa and as well as 22.6 and 35.3 GPa under nonhydrostatic and hydrostatic environments, respectively. Furthermore, the hysteresis effect of the high-pressure phase transition of a sphalerite-structure compound under a hydrostatic environment was disclosed. All of the obtained results can provide new insight into the underlying structural evolution and electrical transport characteristics for the semiconducting compound at different hydrostatic environments.

12.
RSC Adv ; 9(10): 5794-5803, 2019 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35515901

RESUMO

In this study, the vibrational and electrical transport properties of molybdenum diselenide were investigated under both non-hydrostatic and hydrostatic conditions up to ∼40.2 GPa using the diamond anvil cell in conjunction with Raman spectroscopy, electrical conductivity, high-resolution transmission electron microscopy, atomic force microscopy, and first-principles theoretical calculations. The results obtained indicated that the semiconductor-to-metal electronic phase transition of MoSe2 can be extrapolated by some characteristic parameters including abrupt changes in the full width at half maximum of Raman modes, electrical conductivity and calculated bandgap. Under the non-hydrostatic condition, metallization occurred at ∼26.1 GPa and it was irreversible. However, reversible metallization occurred at ∼29.4 GPa under the hydrostatic condition. In addition, the pressure-induced metallization reversibility of MoSe2 can be revealed by high-resolution transmission electron and atomic force microscopy of the recovered samples under different hydrostatic conditions. This discrepancy in the metallization phenomenon of MoSe2 in different hydrostatic environments was attributed to the mitigated interlayer van der Waals coupling and shear stress caused by the insertion of pressure medium into the layers.

13.
Materials (Basel) ; 12(5)2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30866449

RESUMO

The structural, vibrational, and electronic characteristics in orpiment were performed in the diamond anvil cell (DAC), combined with a series of experimental and theoretical research, including Raman spectroscopy, impedance spectroscopy, atomic force microscopy (AFM), high-resolution transmission electron microscopy (HRTEM), and first-principles theoretical calculations. The isostructural phase transition at ~25.0 GPa was manifested as noticeable changes in the compressibility, bond lengths, and slope of the conductivity, as well as in a continuous change in the pressure dependence of the unit cell volume. Furthermore, a pressure-induced metallization occurred at ~42.0 GPa, accompanied by reversible electrical conductivity. We also determined the metallicity of orpiment at 45.0 GPa by first-principles theoretical calculations, and the results were in good agreement with the results of the temperature-dependent conductivity measurements. The HRTEM and AFM images of the recovered sample confirmed that orpiment remains in the crystalline phase with an intact layered structure and available crystal-shaped clusters. These high-pressure behaviors of orpiment present some crucial information on the structural phase transition, metallization, amorphization and superconductivity for the A2B3-type of engineering materials at high pressure.

14.
J Phys Condens Matter ; 28(47): 475501, 2016 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-27633181

RESUMO

The electrical transport properties of undoped and yttrium-doped strontium titanate (Sr(Ti1 - x Y x )O3 - δ , x = 0, 0.02) under high pressure were investigated with in situ impedance spectroscopy measurements. A pressure-induced conductivity switching for undoped and 2 mole% Y-doped strontium titanate is observed at around ~10.0 and 7.0 GPa respectively, which are caused by a cubic to tetragonal I4/mcm phase transition. The decrease of the phase transition point of 2 mole% Y-doped strontium titanate can be attributed to larger Y(3+) atoms occupying the B-site and the creation of more oxygen vacancies, which lead to octahedra tilting and symmetry breaking. The results of the voltage-bias dependence of grain-boundary impedance of undoped and 2 mole% Y-doped strontium titanate at different pressures revealed that Schottky-type potential barriers formed at grain boundaries are the key factor for the accumulation of oxygen vacancy at the interface under pressure.

15.
Rev Sci Instrum ; 80(3): 033903, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19334930

RESUMO

This paper describes the development and application of a novel method for the measurement of grain boundary electrical conductivity of rock at high temperature and pressure. In this method, the metal electrodes, the corresponding metal shielding case, and the sleeves are altered in order to appropriately adjust and monitor the oxygen fugacity in a sample cavity in a high-pressure apparatus. As an example, a series of oxygen buffers including Fe(3)O(4) + Fe(2)O(3), Ni + NiO, Fe + Fe(3)O(4), Fe + FeO, and Mo + MoO(2) was selected and tested, and the oxygen fugacity was confirmed as adjusted during the process of electrical conductivity measurements. Application of this method provides a powerful means of restricting specific thermodynamic conditions at high temperature and pressure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA