Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Curr Opin Ophthalmol ; 34(5): 422-430, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37527200

RESUMO

PURPOSE OF REVIEW: Despite the growing scope of artificial intelligence (AI) and deep learning (DL) applications in the field of ophthalmology, most have yet to reach clinical adoption. Beyond model performance metrics, there has been an increasing emphasis on the need for explainability of proposed DL models. RECENT FINDINGS: Several explainable AI (XAI) methods have been proposed, and increasingly applied in ophthalmological DL applications, predominantly in medical imaging analysis tasks. SUMMARY: We summarize an overview of the key concepts, and categorize some examples of commonly employed XAI methods. Specific to ophthalmology, we explore XAI from a clinical perspective, in enhancing end-user trust, assisting clinical management, and uncovering new insights. We finally discuss its limitations and future directions to strengthen XAI for application to clinical practice.

2.
Front Comput Neurosci ; 11: 97, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29114215

RESUMO

We here introduce and study the properties, via computer simulation, of a candidate automated approach to algorithmic reconstruction of dense neural morphology, based on simulated data of the kind that would be obtained via two emerging molecular technologies-expansion microscopy (ExM) and in-situ molecular barcoding. We utilize a convolutional neural network to detect neuronal boundaries from protein-tagged plasma membrane images obtained via ExM, as well as a subsequent supervoxel-merging pipeline guided by optical readout of information-rich, cell-specific nucleic acid barcodes. We attempt to use conservative imaging and labeling parameters, with the goal of establishing a baseline case that points to the potential feasibility of optical circuit reconstruction, leaving open the possibility of higher-performance labeling technologies and algorithms. We find that, even with these conservative assumptions, an all-optical approach to dense neural morphology reconstruction may be possible via the proposed algorithmic framework. Future work should explore both the design-space of chemical labels and barcodes, as well as algorithms, to ultimately enable routine, high-performance optical circuit reconstruction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA