Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Theor Appl Genet ; 130(3): 539-547, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27896366

RESUMO

KEY MESSAGE: In Chinese cabbage, there are two Rf loci for pol CMS and one of them was mapped to a 12.6-kb region containing a potential candidate gene encoding PPR protein. In Chinese cabbage (Brassica rapa), polima cytoplasmic male sterility (pol CMS) is an important CMS type and is widely used for hybrid breeding. By extensive test crossing in Chinese cabbage, four restorer lines (92s105, 01s325, 00s109, and 88s148) for pol CMS were screened. By analyzing the allelism of the four restorer lines, it was found that 92s105, 01s325, and 00s109 had the same "restorers of fertility" (Rf) locus (designated as BrRfp1), but 88s148 had a different Rf locus (designated as BrRfp2). For fine mapping the BrRfp1 locus of 92s105, a BC1F1 population with 487 individuals and a BC1F2 population with 2485 individuals were successively constructed. Using simple sequence repeat (SSR) markers developed from Brassica rapa reference genome and InDel markers derived from whole-genome resequencing data of 94c9 and 92s105, BrRfp1 was mapped to a 12.6-kb region containing a potential candidate gene encoding pentatricopeptide repeat-containing protein. Based on the nucleotide polymorphisms of the candidate gene sequence between the restoring and nonrestoring alleles, a co-segregating marker SC718 was developed, which would be helpful for hybrid breeding by marker-assisted screening and for detecting new restorer lines.


Assuntos
Brassica rapa/genética , Genes de Plantas , Infertilidade das Plantas/genética , Alelos , Sequência de Aminoácidos , Brassica rapa/fisiologia , Mapeamento Cromossômico , Clonagem Molecular , DNA de Plantas/genética , Marcadores Genéticos , Mutação INDEL , Repetições de Microssatélites , Melhoramento Vegetal
2.
Front Plant Sci ; 7: 1180, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27536317

RESUMO

Malate dehydrogenases (MDHs) are key metabolic enzymes that play important roles in plant growth and development. In the present study, we isolated the full-length and coding sequences of BraMDH from Chinese cabbage [Brassica campestris L. ssp. pekinensis (Lour) Olsson]. We conducted bioinformatics analysis and a subcellular localization assay, which revealed that the BraMDH gene sequence contained no introns and that BraMDH is localized to the chloroplast. In addition, the expression pattern of BraMDH in Chinese cabbage was investigated, which revealed that BraMDH was heavily expressed in inflorescence apical meristems, as well as the effect of BraMDH overexpression in two homozygous transgenic Arabidopsis lines, which resulted in early bolting and taller inflorescence stems. Furthermore, the fresh and dry weights of aerial tissue from the transgenic Arabidopsis plants were significantly higher than those from the corresponding wild-type plants, as were plant height, the number of rosette leaves, and the number of siliques produced, and the transgenic plants also exhibited stronger aluminum resistance when treated with AlCl3. Therefore, our results suggest that BraMDH has a dramatic effect on plant growth and that the gene is involved in both plant growth and aluminum resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA