Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Pediatr Surg Int ; 39(1): 54, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36534156

RESUMO

BACKGROUND: Plasma exosomal microRNAs have been suggested to be potential biomarkers of disease. However, the exosomal microRNAs in Hirschsprung's disease (HSCR) are still unclear. In this study, we analyzed the miRNA profiles of HSCR and elucidated the mechanism of the selected miR-199a-3p in the development of HSCR. METHODS: Plasma exosomes were isolated, and exosomal miRNA high-throughput sequencing was performed to obtain differentially expressed miRNAs. CCK-8 and Transwell assay were used to determine the function of the most differentially expressed miRNA, which was confirmed in tissue specimen. Thereafter, target genes of the selected miRNAs were predicted by the databases. Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes Genomes (KEGG) analysis, and protein-protein interaction network (PPI) construction of possible target genes were used to perform enrichment analysis and interaction. Finally, the PCR, Western blot and recovery experiment were used to confirm the function of target gene, mammalian target of rapamycin (mTOR), in vitro. RESULTS: The expression of miR-199a-3p was upregulated in plasma exosomes and diseased colonic tissues of patients with HSCR. In vitro, miR-199a-3p can inhibit cell proliferation and migration. Bioinformatic analysis suggested that mTOR might be a potential target of miR-199a-3p in HSCR. mTOR was discovered to be downregulated by miR-199a-3p in vitro. The negative connection between mTOR and miR-199a-3p was confirmed in tissue samples. mTOR can partially reverse the effect of miR-199a-3p on cell proliferation and migration function in vitro. CONCLUSIONS: miR-199a-3p suppresses cell growth and motility, partially by targeting mTOR. Plasma exosomal miR-199a-3p, a diagnostic marker, is crucial for the development of HSCR.


Assuntos
Exossomos , Doença de Hirschsprung , MicroRNAs , Serina-Treonina Quinases TOR , Humanos , Proliferação de Células/genética , Doença de Hirschsprung/genética , MicroRNAs/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
2.
Steroids ; 184: 109041, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35561789

RESUMO

Hypospadias, a malformation of male external genitalia, is characterized by an aberrant opening of the urethra on the ventral side of the penis. It is considered a complex disorder with both environmental and genetic factors involved in its pathogenesis. To identify the genetic abnormality involved in the pathogenesis of hypospadias, we performed whole exome sequencing (WES) analysis in 42 hypospadias patients with karyotype 46, XY in the Nanhai Meternity&Child Health Hospital of Foshan. All the likely pathogenic variants were confirmed by Sanger sequencing and assessed by Sorting Intolerant from Tolerant (SIFT), PROVEAN, PolyPhen2, ClinPred, LRT, Mutation Assessor, FATHMM, and GERP software. We discovered 27 gene mutations in 20 patients, including eight cases of the SRD5A2 gene, 4 cases of the AR gene, 3 cases of the CYP17A1 gene, 1 case of the WT1 gene, 1 case of the ANOS1 gene, 1 case of the NR5A1 gene, 1 case of the FGFR1 gene, and one case of the DHX37 gene. Our study is the first to describe six novel missense mutations, AR(c.302G > A, c.2593G > T, and c.1705G > T), CYP17A1(c.1298 T > C), FGFR1 (c.995C > T) and DHX37(c.923G > A). In summary, genetic defect detection was useful for early diagnosis of severe hypospadias in the Han Chinese population. Nevertheless, most cases remain unexplained, and the exact pathogenesis of hypospadias still needs further study.


Assuntos
Sequenciamento do Exoma , Hipospadia , Povo Asiático/genética , Criança , China , Humanos , Hipospadia/genética , Masculino , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA