RESUMO
The transport of auxin controls the rate, direction and localization of plant growth and development. The course of auxin transport is defined by the polar subcellular localization of the PIN proteins, a family of auxin efflux transporters. However, little is known about the composition and regulation of the PIN protein complex. Here, using blue-native PAGE and quantitative mass spectrometry, we identify native PIN core transport units as homo- and heteromers assembled from PIN1, PIN2, PIN3, PIN4 and PIN7 subunits only. Furthermore, we show that endogenous flavonols stabilize PIN dimers to regulate auxin efflux in the same way as does the auxin transport inhibitor 1-naphthylphthalamic acid (NPA). This inhibitory mechanism is counteracted both by the natural auxin indole-3-acetic acid and by phosphomimetic amino acids introduced into the PIN1 cytoplasmic domain. Our results lend mechanistic insights into an endogenous control mechanism which regulates PIN function and opens the way for a deeper understanding of the protein environment and regulation of the polar auxin transport complex.
Assuntos
Proteínas de Arabidopsis/metabolismo , Transporte Biológico/fisiologia , Flavonóis/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Ftalimidas/metabolismoRESUMO
U-Net is a generic deep-learning solution for frequently occurring quantification tasks such as cell detection and shape measurements in biomedical image data. We present an ImageJ plugin that enables non-machine-learning experts to analyze their data with U-Net on either a local computer or a remote server/cloud service. The plugin comes with pretrained models for single-cell segmentation and allows for U-Net to be adapted to new tasks on the basis of a few annotated samples.
Assuntos
Contagem de Células , Aprendizado Profundo , Computação em Nuvem , Redes Neurais de Computação , Design de SoftwareRESUMO
The genetic transformation of plant cells is critically dependent on the availability of efficient selectable marker gene. Sulfonamides are herbicides that, by inhibiting the folic acid biosynthetic pathway, suppress the growth of untransformed cells. Sulfonamide resistance genes that were previously developed as selectable markers for plant transformation were based on the assumption that, in plants, the folic acid biosynthetic pathway resides in the chloroplast compartment. Consequently, the Sul resistance protein, a herbicide-insensitive dihydropteroate synthase, was targeted to the chloroplast. Although these vectors produce transgenic plants, the transformation efficiencies are low compared to other markers. Here, we show that this inefficiency is due to the erroneous assumption that the folic acid pathway is located in chloroplasts. When the RbcS transit peptide was replaced by a transit peptide for protein import into mitochondria, the compartment where folic acid biosynthesis takes place in yeast, much higher resistance to sulfonamide and much higher transformation efficiencies are obtained, suggesting that current sul vectors are likely to function due to low-level mistargeting of the resistance protein to mitochondria. We constructed a series of optimized transformation vectors and demonstrate that they produce transgenic events at very high frequency in both the seed plant tobacco and the green alga Chlamydomonas reinhardtii. Co-transformation experiments in tobacco revealed that sul is even superior to nptII, the currently most efficient selectable marker gene, and thus provides an attractive marker for the high-throughput genetic transformation of plants and algae.
Assuntos
Chlamydomonas/efeitos dos fármacos , Edição de Genes/métodos , Resistência a Herbicidas/genética , Herbicidas , Plantas Geneticamente Modificadas/efeitos dos fármacos , Sulfadiazina , Chlamydomonas/genética , Cloroplastos/efeitos dos fármacos , Cloroplastos/genética , Marcadores Genéticos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Plantas Geneticamente Modificadas/genéticaRESUMO
The chloroplast ATP synthase catalyzes the light-driven synthesis of ATP and acts as a key feedback regulatory component of photosynthesis. Arabidopsis possesses two homologues of the regulatory γ subunit of the ATP synthase, encoded by the ATPC1 and ATPC2 genes. Using a series of mutants, we show that both these subunits can support photosynthetic ATP synthesis in vivo with similar specific activities, but that in wild-type plants, only γ(1) is involved in ATP synthesis in photosynthesis. The γ(1)-containing ATP synthase shows classical light-induced redox regulation, whereas the mutant expressing only γ(2)-ATP synthase (gamma exchange-revised ATP synthase, gamera) shows equally high ATP synthase activity in the light and dark. In situ redox titrations demonstrate that the regulatory thiol groups on γ(2)-ATP synthase remain reduced under physiological conditions but can be oxidized by the strong oxidant diamide, implying that the redox potential for the thiol/disulphide transition in γ(2) is substantially higher than that for γ(1). This regulatory difference may be attributed to alterations in the residues near the redox-active thiols. We propose that γ(2)-ATP synthase functions to catalyze ATP hydrolysis-driven proton translocation in nonphotosynthetic plastids, maintaining a sufficient transthylakoid proton gradient to drive protein translocation or other processes. Consistent with this interpretation, ATPC2 is predominantly expressed in the root, whereas modifying its expression results in alteration of root hair development. Phylogenetic analysis suggests that γ(2) originated from ancient gene duplication, resulting in divergent evolution of functionally distinct ATP synthase complexes in dicots and mosses.
Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/enzimologia , ATPases de Cloroplastos Translocadoras de Prótons/fisiologia , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Aminoácidos/química , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Transporte Biológico Ativo , ATPases de Cloroplastos Translocadoras de Prótons/química , ATPases de Cloroplastos Translocadoras de Prótons/genética , Cloroplastos/enzimologia , Diamida/farmacologia , Evolução Molecular , Duplicação Gênica , Luz , Dados de Sequência Molecular , Morfogênese , Oxidantes/farmacologia , Oxirredução , Fotossíntese/efeitos da radiação , Filogenia , Folhas de Planta/enzimologia , Raízes de Plantas/enzimologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/ultraestrutura , Plantas/enzimologia , Plastídeos/enzimologia , Transporte Proteico , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Tiorredoxinas/metabolismoRESUMO
The chloroplast CF0-CF1-ATP synthase (ATP synthase) is activated in the light and inactivated in the dark by thioredoxin-mediated redox modulation of a disulfide bridge on its γ subunit. The activity of the ATP synthase is also fine-tuned during steady-state photosynthesis in response to metabolic changes, e.g. altering CO2 levels to adjust the thylakoid proton gradient and thus the regulation of light harvesting and electron transfer. The mechanism of this fine-tuning is unknown. We test here the possibility that it also involves redox modulation. We found that modifying the Arabidopsis thaliana γ subunit by mutating three highly conserved acidic amino acids, D211V, E212L, and E226L, resulted in a mutant, termed mothra, in which ATP synthase which lacked light-dark regulation had relatively small effects on maximal activity in vivo. In situ equilibrium redox titrations and thiol redox-sensitive labeling studies showed that the γ subunit disulfide/sulfhydryl couple in the modified ATP synthase has a more reducing redox potential and thus remains predominantly oxidized under physiological conditions, implying that the highly conserved acidic residues in the γ subunit influence thiol redox potential. In contrast to its altered light-dark regulation, mothra retained wild-type fine-tuning of ATP synthase activity in response to changes in ambient CO2 concentrations, indicating that the light-dark- and metabolic-related regulation occur through different mechanisms, possibly via small molecule allosteric effectors or covalent modification.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , ATPases de Cloroplastos Translocadoras de Prótons/metabolismo , Luz , Fotoperíodo , Tilacoides/enzimologia , Regulação Alostérica/fisiologia , Substituição de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Dióxido de Carbono/metabolismo , ATPases de Cloroplastos Translocadoras de Prótons/genética , Mutação de Sentido Incorreto , Oxirredução , Tilacoides/genéticaRESUMO
Bacterial protein toxins which modify Rho GTPase are useful for the analysis of Rho signalling in animal cells, but these toxins cannot be taken up by plant cells. We demonstrate in vitro deamidation of Arabidopsis Rop4 by Escherichia coli Cytotoxic Necrotizing Factor 1 (CNF1) and glucosylation by Clostridium difficile toxin B. Expression of the catalytic domain of CNF1 caused modification and activation of co-expressed Arabidopsis Rop4 GTPase in tobacco leaves, resulting in hypersensitive-like cell death. By contrast, the catalytic domain of toxin B modified and inactivated co-expressed constitutively active Rop4, blocking the hypersensitive response caused by over-expression of active Rops. In transgenic Arabidopsis, both CNF1 and toxin B inhibited Rop-dependent polar morphogenesis of leaf epidermal cells. Toxin B expression also inhibited Rop-dependent morphogenesis of root hairs and trichome branching, and resulted in root meristem enlargement and dwarf growth. Our results show that CNF1 and toxin B transgenes are effective tools in Rop GTPase signalling studies.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Toxinas Bacterianas/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Toxinas Bacterianas/genética , Escherichia coli/metabolismo , Proteínas de Ligação ao GTP/genética , Dados de Sequência Molecular , Epiderme Vegetal/citologia , Epiderme Vegetal/metabolismo , Folhas de Planta/citologia , Folhas de Planta/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Nicotiana/genética , Nicotiana/metabolismo , Proteínas rac de Ligação ao GTP/genéticaRESUMO
The plant hormone auxin is a mobile signal which affects nuclear transcription by regulating the stability of auxin/indole-3-acetic acid (IAA) repressor proteins. Auxin is transported polarly from cell to cell by auxin efflux proteins of the PIN family, but it is not as yet clear how auxin levels are regulated within cells and how access of auxin to the nucleus may be controlled. The Arabidopsis genome contains eight PINs, encoding proteins with a similar membrane topology. While five of the PINs are typically targeted polarly to the plasma membranes, the smallest members of the family, PIN5 and PIN8, seem to be located not at the plasma membrane but in endomembranes. Here we demonstrate by electron microscopy analysis that PIN8, which is specifically expressed in pollen, resides in the endoplasmic reticulum and that it remains internally localized during pollen tube growth. Transgenic Arabidopsis and tobacco plants were generated overexpressing or ectopically expressing functional PIN8, and its role in control of auxin homeostasis was studied. PIN8 ectopic expression resulted in strong auxin-related phenotypes. The severity of phenotypes depended on PIN8 protein levels, suggesting a rate-limiting activity for PIN8. The observed phenotypes correlated with elevated levels of free IAA and ester-conjugated IAA. Activation of the auxin-regulated synthetic DR5 promoter and of auxin response genes was strongly repressed in seedlings overexpressing PIN8 when exposed to 1-naphthalene acetic acid. Thus, our data show a functional role for endoplasmic reticulum-localized PIN8 and suggest a mechanism whereby PIN8 controls auxin thresholds and access of auxin to the nucleus, thereby regulating auxin-dependent transcriptional activity.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Retículo Endoplasmático/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Pólen/metabolismo , Genes Reporter , Homeostase , Fenótipo , Plântula/metabolismo , Regulação para CimaRESUMO
In plants, the phytohormone auxin acts as a master regulator of developmental processes and environmental responses. The best characterized process in the auxin regulatory network occurs at the subcellular scale, wherein auxin mediates signal transduction into transcriptional programs by triggering the degradation of Aux/IAA transcriptional repressor proteins in the nucleus. However, whether and how auxin movement between the nucleus and the surrounding compartments is regulated remain elusive. Using a fluorescent auxin analog, we show that its diffusion into the nucleus is restricted. By combining mathematical modeling with time course assays on auxin-mediated nuclear signaling and quantitative phenotyping in single plant cell systems, we show that ER-to-nucleus auxin flux represents a major subcellular pathway to directly control nuclear auxin levels. Our findings propose that the homeostatically regulated auxin pool in the ER and ER-to-nucleus auxin fluxes underpin auxin-mediated downstream responses in plant cells.
Assuntos
Retículo Endoplasmático/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Plantas/genética , Humanos , Proteínas de Plantas/metabolismo , Transdução de SinaisRESUMO
Amide-linked conjugates of indole-3-acetic acid (IAA) have been identified in most plant species. They function in storage, inactivation or inhibition of the growth regulator auxin. We investigated how the major known endogenous amide-linked IAA conjugates with auxin-like activity act in auxin signaling and what role ILR1-like proteins play in this process in Arabidopsis. We used a genetically encoded auxin sensor to show that IAA-Leu, IAA-Ala and IAA-Phe act through the TIR1-dependent signaling pathway. Furthermore, by using the sensor as a free IAA reporter, we followed conjugate hydrolysis mediated by ILR1, ILL2 and IAR3 in plant cells and correlated the activity of the hydrolases with a modulation of auxin response. The conjugate preferences that we observed are in agreement with available in vitro data for ILR1. Moreover, we identified IAA-Leu as an additional substrate for IAR3 and showed that ILL2 has a more moderate kinetic performance than observed in vitro. Finally, we proved that IAR3, ILL2 and ILR1 reside in the endoplasmic reticulum, indicating that in this compartment the hydrolases regulate the rates of amido-IAA hydrolysis which results in activation of auxin signaling.
Assuntos
Amidoidrolases/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Retículo Endoplasmático/metabolismo , Ácidos Indolacéticos/metabolismo , Amidoidrolases/química , Sequência de Aminoácidos , Aminoácidos/química , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Expressão Gênica/efeitos dos fármacos , Hidrólise , Ácidos Indolacéticos/química , Microscopia Confocal , Dados de Sequência Molecular , Reguladores de Crescimento de Plantas/química , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Transdução de Sinais/efeitos dos fármacosRESUMO
Time-resolved quantitative analysis of auxin-mediated processes in plant cells is as of yet limited. By applying a synergistic mammalian and plant synthetic biology approach, we have developed a novel ratiometric luminescent biosensor with wide applicability in the study of auxin metabolism, transport, and signalling. The sensitivity and kinetic properties of our genetically encoded biosensor open new perspectives for the analysis of highly complex auxin dynamics in plant growth and development.
Assuntos
Técnicas Biossensoriais , Ácidos Indolacéticos/análise , Plantas/química , Linhagem Celular , Humanos , Cinética , Limite de DetecçãoRESUMO
Cellular auxin homeostasis is controlled at many levels that include auxin biosynthesis, auxin metabolism, and auxin transport. In addition to intercellular auxin transport, auxin homeostasis is modulated by auxin flow through the endoplasmic reticulum (ER). PIN5, a member of the auxin efflux facilitators PIN protein family, was the first protein to be characterized as an intracellular auxin transporter. We demonstrated that PIN8, the closest member of the PIN family to PIN5, represents another ER-residing auxin transporter. PIN8 is specifically expressed in the male gametophyte and is located in the ER. By combining genetic, physiological, cellular and biochemical data we demonstrated a role for PIN8 in intracellular auxin homeostasis. Although our investigation shed light on intracellular auxin transport in pollen, the physiological function of PIN8 still remains to be elucidated. Here we discuss our data taking in consideration other recent findings.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Pólen/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte Biológico/genética , Transporte Biológico/fisiologia , Retículo Endoplasmático/metabolismo , Proteínas de Membrana Transportadoras/genéticaRESUMO
Photosystem II (PSII) core complexes consist of CP47, CP43, D1, D2 proteins and of several low molecular weight integral membrane polypeptides, such as the chloroplast-encoded PsbE, PsbF, and PsbI proteins. To elucidate the function of PsbI in the photosynthetic process as well as in the biogenesis of PSII in higher plants, we generated homoplastomic knock-out plants by replacing most of the tobacco psbI gene with a spectinomycin resistance cartridge. Mutant plants are photoautotrophically viable under green house conditions but sensitive to high light irradiation. Antenna proteins of PSII accumulate to normal amounts, but levels of the PSII core complex are reduced by 50%. Bioenergetic and fluorescence studies uncovered that PsbI is required for the stability but not for the assembly of dimeric PSII and supercomplexes consisting of PSII and the outer antenna (PSII-LHCII). Thermoluminescence emission bands indicate that the presence of PsbI is required for assembly of a fully functional Q(A) binding site. We show that phosphorylation of the reaction center proteins D1 and D2 is light and redox-regulated in the wild type, but phosphorylation is abolished in the mutant, presumably due to structural alterations of PSII when PsbI is deficient. Unlike wild type, phosphorylation of LHCII is strongly increased in the dark due to accumulation of reduced plastoquinone, whereas even upon state II light phosphorylation is decreased in delta psbI. These data attest that phosphorylation of D1/D2, CP43, and LHCII is regulated differently.
Assuntos
Nicotiana/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Antibacterianos/farmacologia , Sítios de Ligação , Clorofila/metabolismo , Farmacorresistência Bacteriana , Eletroforese em Gel de Poliacrilamida , Immunoblotting , Luz , Complexos de Proteínas Captadores de Luz , Fosforilação , Fotossíntese , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/isolamento & purificação , Plantas Geneticamente Modificadas , Plastídeos/metabolismo , Plastoquinona , Reação em Cadeia da Polimerase , Proteínas Quinases/metabolismo , Espectinomicina/farmacologia , Nicotiana/genéticaRESUMO
The psbEFLJ operon of tobacco plastids encodes four bitopic low molecular mass transmembrane components of photosystem II. Here, we report the effect of inactivation of psbL on the directional forward electron flow of photosystem II as compared to that of the wild type and the psbJ deletion mutant, which is impaired in PSII electron flow to plastoquinone [Regel et al. (2001) J. Biol. Chem. 276, 41473-41478]. Exposure of Delta psbL plants to a saturating light pulse gives rise to the maximal fluorescence emission, Fm(L), which is followed within 4-6 s by a broader hitherto not observed second fluorescence peak in darkness, Fm(D). Conditions either facilitating oxidation or avoiding reduction of the plastoquinone pool do not affect the Fm(L) level of Delta psbL plants but prevent the appearance of Fm(D). The level of Fm(D) is proportional to the intensity and duration of the light pulse allowing reduction of the plastoquinone pool in dark-adapted leaves prior to the activation of PSI and oxidation of plastoquinol. Lowering the temperature decreases the Fm(D) level in the Delta psbL mutant, whereas it increases considerably the lifetime of Q(A)*- in the Delta psbJ mutant. The thermoluminescence signal generated by Q(A)*-/S(2) charge recombination is not affected; on the other hand, charge recombination of Q(B)*-/S(2,3) could not be detected in Delta psbL plants. PSII is highly sensitive to photoinhibition in Delta psbL. We conclude that PsbL prevents reduction of PSII by back electron flow from plastoquinol protecting PSII from photoinactivation, whereas PsbJ regulates forward electron flow from Q(A)*- to the plastoquinone pool. Therefore, both proteins contribute substantially to ensure unidirectional forward electron flow from PSII to the plastoquinone pool.
Assuntos
Proteínas de Bactérias , Proteínas de Membrana/química , Complexo de Proteína do Fotossistema II/química , Plastoquinona/análogos & derivados , Plastoquinona/química , Subunidades Proteicas/química , Clorofila/química , Clorofila A , Escuridão , Transporte de Elétrons/genética , Temperatura Alta , Cinética , Luz , Medições Luminescentes , Proteínas de Membrana/genética , Mutação , Oxirredução , Fotossíntese/genética , Complexo de Proteína do Fotossistema I/química , Complexo de Proteína do Fotossistema II/genética , Folhas de Planta/química , Folhas de Planta/genética , Subunidades Proteicas/genética , Espectrometria de Fluorescência , Temperatura , Nicotiana/química , Nicotiana/genéticaRESUMO
The nuclear atpC1 gene encoding the gamma subunit of the plastid ATP synthase has been inactivated by T-DNA insertion mutagenesis in Arabidopsis thaliana. In the seedling-lethal dpa1 (deficiency of plastid ATP synthase 1) mutant, the absence of detectable amounts of the gamma subunit destabilizes the entire ATP synthase complex. The expression of a second gene copy, atpC2, is unaltered in dpa1 and is not sufficient to compensate for the lack of atpC1 expression. However, in vivo protein labeling analysis suggests that assembly of the ATP synthase alpha and beta subunits into the thylakoid membrane still occurs in dpa1. As a consequence of the destabilized ATP synthase complex, photophosphorylation is abolished even under reducing conditions. Further effects of the mutation include an increased light sensitivity of the plant and an altered photosystem II activity. At low light intensity, chlorophyll fluorescence induction kinetics is close to those found in wild type, but non-photochemical quenching strongly increases with increasing actinic light intensity resulting in steady state fluorescence levels of about 60% of the minimal dark fluorescence. Most fluorescence quenching relaxed within 3 min after dark incubation. Spectroscopic and biochemical studies have shown that a high proton gradient is responsible for most quenching. Thylakoids of illuminated dpa1 plants were swollen due to an increased proton accumulation in the lumen. Expression profiling of 3292 nuclear genes encoding mainly chloroplast proteins demonstrates that most organelle functions are down-regulated. On the contrary, the mRNA expression of some photosynthesis genes is significantly up-regulated, probably to compensate for the defect in dpa1.
Assuntos
Arabidopsis/enzimologia , ATPases de Cloroplastos Translocadoras de Prótons/química , Actinas/química , Northern Blotting , Southern Blotting , Núcleo Celular/metabolismo , Clorofila/química , ATPases de Cloroplastos Translocadoras de Prótons/metabolismo , Cloroplastos/metabolismo , Cloroplastos/ultraestrutura , Regulação para Baixo , Citometria de Fluxo , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Immunoblotting , Cinética , Luz , Microscopia Eletrônica , Mutação , Oxirredução , Fenótipo , Fosforilação , Plastídeos/metabolismo , Biossíntese de Proteínas , Estrutura Terciária de Proteína , Prótons , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espectrometria de Fluorescência , Tilacoides/química , Tilacoides/metabolismo , Fatores de Tempo , Regulação para CimaRESUMO
The expression of several barley (Hordeum vulgare) cold-regulated (cor) genes during cold acclimation was blocked in the albino mutant a(n), implying a chloroplast control on mRNAs accumulation. By using albino and xantha mutants ordered according to the step in chloroplast biogenesis affected, we show that the cold-dependent accumulation of cor14b, tmc-ap3, and blt14 mRNAs depends on plastid developmental stage. Plants acquire the ability to fully express cor genes only after the development of primary thylakoid membranes in their chloroplasts. To investigate the chloroplast-dependent mechanism involved in cor gene expression, the activity of a 643-bp cor14b promoter fragment was assayed in wild-type and albino mutant a(n) leaf explants using transient beta-glucuronidase reporter expression assay. Deletion analysis identified a 27-bp region between nucleotides -274 and -247 with respect to the transcription start point, encompassing a boundary of some element that contributes to the cold-induced expression of cor14b. However, cor14b promoter was equally active in green and in albino a(n) leaves, suggesting that chloroplast controls cor14b expression by posttranscriptional mechanisms. Barley mutants lacking either photosystem I or II reaction center complexes were then used to evaluate the effects of redox state of electron transport chain components on COR14b accumulation. In the mutants analyzed, the amount of COR14b protein, but not the steady-state level of the corresponding mRNA, was dependent on the redox state of the electron transport chain. Treatments of the vir-zb63 mutant with electron transport chain inhibitors showed that oxidized plastoquinone promotes COR14b accumulation, thus suggesting a molecular relationship between plastoquinone/plastoquinol pool and COR14b.