Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 19(1): e1010104, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36649330

RESUMO

The prognosis for pancreatic ductal adenocarcinoma (PDAC) patients has not significantly improved in the past 3 decades, highlighting the need for more effective treatment approaches. Poor patient outcomes and lack of response to therapy can be attributed, in part, to a lack of uptake of perfusion of systemically administered chemotherapeutic drugs into the tumour. Wet-spun alginate fibres loaded with the chemotherapeutic agent gemcitabine have been developed as a potential tool for overcoming the barriers in delivery of systemically administrated drugs to the PDAC tumour microenvironment by delivering high concentrations of drug to the tumour directly over an extended period. While exciting, the practicality, safety, and effectiveness of these devices in a clinical setting requires further investigation. Furthermore, an in-depth assessment of the drug-release rate from these devices needs to be undertaken to determine whether an optimal release profile exists. Using a hybrid computational model (agent-based model and partial differential equation system), we developed a simulation of pancreatic tumour growth and response to treatment with gemcitabine loaded alginate fibres. The model was calibrated using in vitro and in vivo data and simulated using a finite volume method discretisation. We then used the model to compare different intratumoural implantation protocols and gemcitabine-release rates. In our model, the primary driver of pancreatic tumour growth was the rate of tumour cell division. We were able to demonstrate that intratumoural placement of gemcitabine loaded fibres was more effective than peritumoural placement. Additionally, we quantified the efficacy of different release profiles from the implanted fibres that have not yet been tested experimentally. Altogether, the model developed here is a tool that can be used to investigate other drug delivery devices to improve the arsenal of treatments available for PDAC and other difficult-to-treat cancers in the future.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Gencitabina , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Alginatos/uso terapêutico , Linhagem Celular Tumoral , Microambiente Tumoral , Neoplasias Pancreáticas
2.
J Math Biol ; 87(6): 84, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37947884

RESUMO

Autoimmune diseases, such as Multiple Sclerosis, are often modelled through the dynamics of T-cell interactions. However, the spatial aspect of such diseases, and how dynamics may result in spatially heterogeneous outcomes, is often overlooked. We consider the effects of diffusion and chemotaxis on T-cell regulatory dynamics using a three-species model of effector and regulator T-cell populations, along with a chemical signalling agent. While diffusion alone cannot lead to instability and spatial patterning, the inclusion of chemotaxis can result in multiple forms of instability that produce highly complicated spatiotemporal behaviour. The parameter regimes in which different instabilities occur are determined through linear stability analysis and the full dynamics is explored through numerical simulation.


Assuntos
Quimiotaxia , Modelos Biológicos , Linfócitos T , Transdução de Sinais , Comunicação Celular , Simulação por Computador , Difusão
3.
Phys Rev Lett ; 120(3): 034505, 2018 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-29400525

RESUMO

The formation of iterated structures, such as satellite and subsatellite drops, filaments, and bubbles, is a common feature in interfacial hydrodynamics. Here we undertake a computational and theoretical study of their origin in the case of thin films of viscous fluids that are destabilized by long-range molecular or other forces. We demonstrate that iterated structures appear as a consequence of discrete self-similarity, where certain patterns repeat themselves, subject to rescaling, periodically in a logarithmic time scale. The result is an infinite sequence of ridges and filaments with similarity properties. The character of these discretely self-similar solutions as the result of a Hopf bifurcation from ordinarily self-similar solutions is also described.

4.
Phys Rev E ; 100(5-1): 053109, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31869947

RESUMO

We study a model for the evolution of an axially symmetric bubble of inviscid fluid in a homogeneous porous medium otherwise saturated with a viscous fluid. The model is a moving boundary problem that is a higher-dimensional analog of Hele-Shaw flow. Here we are concerned with the development of pinch-off singularities characterized by a blowup of the interface curvature and the bubble subsequently breaking up into two; these singularities do not occur in the corresponding two-dimensional Hele-Shaw problem. By applying a numerical scheme based on the level set method, we show that solutions to our problem can undergo pinch-off in various geometries. A similarity analysis suggests that the minimum radius behaves as a power law in time with exponent α=1/3 just before and after pinch-off has occurred, regardless of the initial conditions; our numerical results support this prediction. Further, we apply our numerical scheme to simulate the time-dependent development and translation of axially symmetric Saffman-Taylor fingers and Taylor-Saffman bubbles in a cylindrical tube, highlighting key similarities and differences with the well-studied two-dimensional cases.

5.
Proc Math Phys Eng Sci ; 472(2185): 20150629, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26997898

RESUMO

Motivated by a problem from fluid mechanics, we consider a generalization of the standard curve shortening flow problem for a closed embedded plane curve such that the area enclosed by the curve is forced to decrease at a prescribed rate. Using formal asymptotic and numerical techniques, we derive possible extinction shapes as the curve contracts to a point, dependent on the rate of decreasing area; we find there is a wider class of extinction shapes than for standard curve shortening, for which initially simple closed curves are always asymptotically circular. We also provide numerical evidence that self-intersection is possible for non-convex initial conditions, distinguishing between pinch-off and coalescence of the curve interior.

6.
Artigo em Inglês | MEDLINE | ID: mdl-25768606

RESUMO

The mathematical model of a steadily propagating Saffman-Taylor finger in a Hele-Shaw channel has applications to two-dimensional interacting streamer discharges which are aligned in a periodic array. In the streamer context, the relevant regularization on the interface is not provided by surface tension but instead has been postulated to involve a mechanism equivalent to kinetic undercooling, which acts to penalize high velocities and prevent blow-up of the unregularized solution. Previous asymptotic results for the Hele-Shaw finger problem with kinetic undercooling suggest that for a given value of the kinetic undercooling parameter, there is a discrete set of possible finger shapes, each analytic at the nose and occupying a different fraction of the channel width. In the limit in which the kinetic undercooling parameter vanishes, the fraction for each family approaches 1/2, suggesting that this "selection" of 1/2 by kinetic undercooling is qualitatively similar to the well-known analog with surface tension. We treat the numerical problem of computing these Saffman-Taylor fingers with kinetic undercooling, which turns out to be more subtle than the analog with surface tension, since kinetic undercooling permits finger shapes which are corner-free but not analytic. We provide numerical evidence for the selection mechanism by setting up a problem with both kinetic undercooling and surface tension and numerically taking the limit that the surface tension vanishes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA